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ABSTRACT

Secondary structure prediction has been an essential task in
determining the structure and function of the proteins. Prediction
accuracy is improving every year towards the 88% estimated theo-
retical limit [1]. There are two approaches for the secondary struc-
ture prediction. The first one, ab initio (single sequence) prediction
does not use any homology information. The evolutionary infor-
mation, if available, is used by the second approach to improve the
prediction accuracy by a few percentages [2]. In this paper, we
address the problem of single sequence prediction by developing
a semi Markov HMM, similar to the one proposed by Schmidler
et al. [2]. We introduce a better dependency model by consider-
ing the statistically significant amino acid correlation patterns at
segment borders. Also, we propose an internal dependency model
considering right to left dependencies without modifying the left
to right HMM topology. In addition, we propose an iterative train-
ing method to better estimate the HMM parameters. Putting all
these together, we obtained 1.5% improvement in three-state-per-
residue accuracy.

1. INTRODUCTION

A protein is a biomolecule constructed from amino acid units. The
adjacent amino acids of 20 different types are connected by a pep-
tide bond. A protein chain could be represented by a string of
amino acid sequence as illustrated in Fig. 1. Protein sequence anal-
ysis is an important area where the goal is to predict the structure
and function of the newly identified proteins.

It has been shown that all the structural information about the
protein is embedded in its amino acid sequence. There are several
levels at which protein structure prediction can be performed. In
secondary structure prediction, one is mainly concerned with the
assignment of secondary structure elements to each amino acid
residue as shown in Fig. 1. In tertiary structure estimation (i.e.,
protein folding), the goal is to predict the conformation assumed
by protein molecule in 3D space.

The three major secondary structure elements are α-helix {H},
β-strand {E} and loop {L}. α-helices are strengthened by hydro-
gen bonds between every fourth amino acid so that the protein
backbone adopts a helical configuration. In β-strands the hydro-
gen bonding is non-local. They adopt a parallel or anti-parallel
sheet configuration. Other structural elements such as bends and
turns are classified as loops. Therefore a secondary structure pre-
diction assigns for each amino acid a structural state from a 3-letter
alphabet {H, E, L}, as depicted in Fig. 1. The secondary structure
prediction is an important problem in protein sequence analysis.

Accurate predictions provide insights into the molecular structure
and function of a protein.

G K C ....... N T F V ← Amino Acid
| | | | | | | Sequence
L L E ....... H H H H ← Secondary Structure

Labels

Figure 1: Secondary Structure Prediction

To date, secondary structure prediction has benefited mostly
from Machine Learning tools where Artificial Intelligence, Neural
Networks and Hidden Markov Models played a central role. There
are essential steps in the development of a machine learning based
predictor. The first step is to perform a statistical analysis in order
to explore the most informative correlations and patterns. This al-
lows us to choose a model that represents the dependency behavior
of various structure elements. The statistical analysis is followed
by the the training phase where a training set is compiled and the
model parameters are derived. Finally, in the testing phase, the
performance is evaluated by making predictions for new test sam-
ples.

There are two aspects of secondary structure prediction. In ab
initio or single sequence prediction, the test sequence does not ex-
hibit significant similarity to any of the training sequences at the
sequence level. This is a limiting factor for the prediction accu-
racy. On the other hand, if there are closely related sequences, this
generally implies their structural similarity, and the predictions are
improved by considering multiple alignments.

In this paper, we addressed the problem of single sequence
predictions. First of all, we performed a statistical analysis to
explore the most informative correlations for different secondary
structures. Then, we chose a semi Markov HMM, which is similar
to the model developed by Schmidler et al. [2]. In this model, we
specifically considered correlations at terminal positions of struc-
tural segments and dependencies to forward 1 residues within the
segments. Finally, we implemented an iterative estimation of the
HMM parameters.

2. CORRELATION ANALYSIS

The first step in building a statistical model is to perform a sta-
tistical analysis in order to explore the dependency structure. We
performed a χ2-test to identify the most informative correlations

1Dependencies to the right positions in a left-to-right-topology
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between amino acid pairs in different types of secondary structure
segments and positions. The χ2 test computes the joint distribution
of amino acid pair, and compares it with the product of marginal
distributions. The 20 × 20 contingency table shows the frequen-
cies of possible amino acid pairs observed in different states and
positions2. Throughout the analysis, we worked with 8100 pro-
teins and their secondary structures collected from Protein Data
Bank (PDB). DSSP assignments [3] for secondary structure were
used to reduce eight structural states to three states where {H, G,
I}→{H}, {E,B}→{E}, {S,T,’ ’}→{L}.

We first considered the correlations between amino acid pairs
at various separation distances. Table 1 shows the results of the
χ2-test for the three secondary structure types. We found that in
α-helix segments, a residue3 at position i is highly correlated with
residues at positions i − 2, i − 3 and i − 4, where i denotes the
position of the amino acid within a segment. Similarly, a β-strand
residue had highest correlations with residues at positions i − 1,
i − 2, and a loop residue had its most significant correlations with
those at positions i − 1, i − 2 and i − 3.

Next, we considered position specific correlations. The termi-
nal positions, which are typically the first and last four positions of
a secondary structure segment as illustrated in Table 2, are known
to have different amino acid frequency distribution from the inter-
nal positions. Especially, α-helices are characterized by capping
boxes where the hydrogen bonding patterns and side-chain inter-
actions are different from the internal positions [4].

The results for terminal positions are given in Table 3 for the
α-helix segments. This shows that there are statistically signif-
icant correlations between residues in terminal positions and the
residues that are outside the segment. This can be explained by the
fact that such terminal residues form their hydrogen bonds with
residues that are outside the segment [4]. Another observation is
that there exist significant correlations with the forward residues.
Also, the degree of correlation for the forward residues might be
different from those of backward, which indicates an asymmetrical
dependency behavior for forward and backward residues. Internal
positions also exhibit similar correlation pattern. For instance, for
α-helix segments, the ith residue in an internal position is highly
correlated with i−2nd, i−3rd, i−4th, i+2nd and i+4th residues.
The degree of correlation between ith and i−2nd residues is differ-
ent from the degree of correlation between ith and i+2nd residues.

3. THE SEMI MARKOV HMM

3.1. Derivation of the Model

In a typical HMM, there is a finite number of distinct hidden states.
Hidden states in our case are structural states {H, E, L }. Each
state generates an observation in the form of amino acid segment.
Starting from an initial state, transitions occur from one state to the
other, following a transition probability distribution. At each state
an amino acid segment is generated according to the observation
frequency distribution. For a thorough review on HMMs, see [5].

A secondary structure of a protein is defined by a vector
(m,S ,T ), where m denotes the total number of segments, S rep-
resents the segment end positions and T represents the structural

2The threshold was computed as 404.6 for a statistical significance
level of 0.05.

3Residue refers to the amino acid.

             S =3                               S =8                         S =12               S =15   1 2 3 4

…       T = L               T = H                     T = L              T = E              T = L             1 2 3 4 5

Figure 2: Representation of the secondary structure of a protein in
terms of structural segments

state of each segment (α-helix, β-strand or loop) A graphical rep-
resentation for the case where T = (L, H, L, E, L,...) and S = (3,
8, 12, 15, ...) is depicted in Fig. 2.

The state prediction could be re-stated as a posterior max-
imization problem. That is, given the observation sequence of
amino acids, denoted by R , find the vector (m,S ,T ) with max-
imum posterior probability P (m,S ,T | R ). Using Bayes rule,
this probability could be expressed as follows:

P (m,S ,T | R ) =
P (R | m,S ,T )P (m,S ,T )

P (R )
, (1)

where P (R | m,S ,T ) denotes the sequence likelihood and
P (m,S ,T ) represents the apriori distribution. Maximizing
P (m,S ,T |R ) with respect to the state variables is equivalent to
maximizing the product P (R | m,S ,T )P (m,S ,T ). Next, we
will model each of these two probability terms.

We modeled the apriori distribution P (m,S ,T ) as follows:

P (m,S ,T ) = P (m)
m∏

j=1

P (Tj | Tj−1)P (Sj | Sj−1, Tj) (2)

Here P (m) is the probability of observing m secondary structure
segments, and it is assumed to be independent from the other state
variables. P (Tj | Tj−1) represents the state transition probability
(among different secondary structure types), and
P (Sj |Sj−1, Tj) allows us to model the length distribution of sec-
ondary structure segments with the following assumption:

P (Sj | Sj−1, Tj) = P (Sj − Sj−1 | Tj). (3)

Next, the likelihood term P (R | m,S ,T ) is modeled as

P (R | m,S ,T ) =

m∏

j=1

P (R [Sj−1+1:Sj ] | S ,T ) (4)

=

m∏

j=1

P (R [Sj−1+1:Sj ] | Sj−1, Sj , Tj)

Here we assume the independence of segment likelihood terms.
Rp:q denotes the sequence of residues with indices from p to q.
P (R [Sj+1:Sj ] | S ,T ) represents the probability of observing a
particular amino acid segment given all state variables. It is equal
to P (R [Sj−1+1:Sj ] |Sj−1, Sj , Tj) because in a HMM the symbol
observation probability depends only on its generator state.

Although the observation probability of amino acids at differ-
ent secondary structure states is assumed to be independent, the
amino acids within the segments are allowed to depend on neigh-
boring residues. To reflect this dependency, P (R [Sj+1:Sj ] |S ,T )
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Helix Strand Loop
Separation χ2 # of pairs χ2 # of pairs χ2 # of pairs

1 3708.74 192,055 8700.16 136,631 6760.65 271,097
2 11408.08 166,037 2812.36 210,150 2812.36 210,150
3 4123.08 140,019 5836.95 69,335 2716.70 162,491
4 8168.01 119,352 3996.21 45,407 1601.23 124,711
5 3340.79 102,328 2631.21 27,829 1382.10 96,342
6 2160.77 86,913 2117.23 15,876 1116.70 75,664
7 3458.79 73,010 —— —— 937.24 60,104
8 1085.31 60,654 —— —— 919.26 48,127

Table 1: Correlations of amino acids

N”’ N” N’ N1 N2 N3 N4 Internal C4 C3 C2 C1 C’ C” C”’

Table 2: Capping Positions

is modeled (for an α-helix segment) as

P (R [Sj+1:Sj ]|S ,T ) = P (R [Sj+1:Sj ]|Sj−1, Sj , Tj = H)

=

Sj−1+lHN∏

i=Sj−1+1

P H
Ni−Sj−1

(Ri|R[Sj−1+1:i−1])

×
Sj−lHC∏

i=Sj−1+lH
N

+1

P H
I (Ri|R[Sj−1+1:i−1])

×
Sj∏

i=Sj−lH
C

+1

P H
CSj−i+1(Ri|R[Sj−1+1:i−1])

Here the first product term represents the observation probability
of amino acids at the N terminal positions of length lHN , the second
product term represents the observation probability at the internal
positions, and finally, the third product expression denotes the ob-
servation probability at the C terminal residues of length lHC . We
also have similar expressions for the strands and the loops.

Unfortunately, at this time, the number of sequences in the
PDB is not sufficient to reliably estimate the conditional probabili-
ties given in Eq. 5. Therefore, to reduce the number of dependency
parameters, amino acids were grouped into three hydrophobicity
classes. The dependency patterns shown in Table 4 were discov-
ered by our statistical analysis. N and C refer to terminal positions.
hi ∈ {hydrophobic, hydrophilic, neutral} denotes the hydropho-
bicity class of the residue Ri at the position i ∈ [1, n], where n is
the length of the segment. For instance, the probability of observ-
ing a particular amino acid R in an α-helix segment at first termi-
nal position depends on the hydrophobicity class of amino acids at
positions i−1, i+2 and i+4. For a particular secondary structure
segment, the segment likelihood term P (R [Sj+1:Sj ] | S ,T ) was
computed by the multiplication of conditional probability terms
given in Table 4 for i = 1, .., n.

3.2. Computational Methods

Given an amino acid sequence R , the vector (m,S ,T ) that max-
imizes the posterior probability P (m,S ,T | R ) is determined
as the predicted secondary structure. This could be found using
a forward-backward algorithm generalized for the semi Markov

Helix
N1 Ri | hi−1, hi+2

N2 Ri | hi−2, hi+1

C1 Ri | hi−2, hi−4

C2 Ri | hi−2, hi−4

Int Ri | hi−2, hi−3, hi−4, hi+2

Strand
N1 Ri | hi−1, hi−2

C1 Ri | hi−2, hi−3

Int Ri | hi−1, hi−2, hi+1, hi+2

Loop
N1 Ri | hi−1, hi−2

N2 Ri | hi−1, hi−2

C1 Ri | hi−1, hi−3

C2 Ri | hi−1, hi−3

Int Ri | hi−1, hi−2

Table 4: Dependencies within segments

HMM [5]. For each position, a posterior probability of being ei-
ther an α-helix, a β-strand or a loop is computed considering all
possible segmentations. The predicted state is chosen as the sec-
ondary structure state with maximum posterior probability.

4. ITERATIVE TRAINING METHOD

After predicting the secondary structure for a particular sequence,
it is useful to iteratively re-adjust HMM parameters using pro-
teins that have close secondary structure composition, and repeat
the prediction step. That is, once we obtain the prediction result
for a test sequence, we compute the α-helix, β-strand, and loop
composition. We then remove the sequences from the training set
that do not have close secondary structure content and re-estimate
the HMM parameters. This is then followed by the prediction of
the secondary structure using the newly estimated parameters. Al-
though close structural composition is not a rigorous definition of
structural similarity, using this measure allows us to reduce the
training dataset to proteins from closely related SCOP families [6].
Therefore, a prediction of a structure from all-α class is likely to be
followed by a training using proteins having high α-helix content.
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χ2 i − 5 i − 4 i − 3 i − 2 i − 1 i + 1 i + 2 i + 3 i + 4 i + 5
N1 1176.4 1264.1 1277.1 1324.3 2018.8 1902.9 2351.0 1591.5 2178.4 937.0
N2 907.8 1217.7 1473.0 2308.0 1902.9 2373.3 2146.9 1355.1 1645.2 1044.4
N3 1073.8 1301.1 4053.3 2105.3 1761.0 1438.5 1802.9 1458.3 1230.7 1245.5
N4 1036.0 941.8 1449.1 1866.1 1272.9 1042.4 1754.6 1071.1 1705.8 945.8
C4 923.9 1098.7 746.5 1225.3 741.2 730.3 1223.2 776.8 1342.6 850.6
C3 819.4 1198.7 995.3 1252.6 732.0 777.6 1297.7 856.0 1013.4 776.5
C2 841.0 1293.1 815.1 1150.1 755.6 636.5 1085.2 789.3 733.5 625.4
C1 785.1 1069.0 750.3 1104.6 630.1 846.0 711.1 684.9 666.0 592.7

Table 3: Position Specific Correlations in Helix Terminal Positions

5. RESULTS

In our simulations, we worked with the single-sequence set derived
from the latest version of PDB [7]. Then, to match the constraints
described in the paper by Schmidler et al. [2], we filtered out
the sequences that have less than 50 and more than 900 residues.
There remained about 1800 proteins.

We followed the same adjustments proposed by Frishman and
Argos [8] to restrict the minimum β-strand length to 3 and mini-
mum α-helix length to 5. Results of the cross validation experi-
ments are provided in Table 5 4. From these results, we see that
there is a 1.5% increase in overall 3-state prediction accuracy in
comparison with BSPSS method [2]. The accuracy measure is de-
fined as:

Q3 =

N∑

i=1

# of correct predictions
# of amino acids

The prediction accuracies for α-helices and β-strands also in-
creased. When the non-reduced dependency structure is used, we
expect the accuracy results to be even higher.

Q3 Qα Qβ QL

BSPSS 67.70 63.45 42.31 79.86
PSS-IC 69.20 67.46 43.51 79.28

Table 5: Cross Validation Results
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7. CONCLUSIONS

For a typical machine learning predictor, the basic improvement in
prediction accuracy would come from developing elegant models
to better capture correlations and implementation of better train-
ing methods. In this work, we performed a statistical analysis to
identify the correlations between amino acids in various secondary
structure segments. Then, we implemented forward-backward al-
gorithm for a semi Markov HMM similar to the model proposed by
Schmidler et al. [2]. We introduced a better dependency model by

4BSPSS: Bayesian Segmentation of Protein Secondary Structure
PSS-IC Protein Secondary Structure Iterations Correlations

considering statistically significant correlations at structural seg-
ment borders. We also extended the internal dependency model
that includes correlations to forward residues. In order to have
better training of the model, we proposed a training method that
iteratively adjusts of HMM parameters using the sequences that
have close secondary structure composition. Because of the re-
strictions in the dataset, we reduced the dependency structure re-
sulting from statistical analysis and obtained a 1.5% increase in the
overall three-state-prediction accuracy. We believe that as more
data becomes available it would be possible to implement and eval-
uate even higher order dependency models.

Typically protein secondary structure prediction methods suf-
fer from low accuracy in β-strand predictions where non-local cor-
relations have a significant role. In this work, we did not specif-
ically address this particular problem, but showed that improve-
ments are possible when higher order dependency models are used
and significant correlations outside the segments are considered.
To achieve higher improvements in prediction accuracy, one needs
to develop better models that capture non-local amino acid corre-
lations especially for β-strands.
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