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ABSTRACT

The development in this paper is a extension of the adaptive RLS-
type algorithm proposed by Zhu and Zhang [1]. Their work uses
the matrix inversion lemma to iteratively solve the equation ob-
tained from the natural gradient of the nonlinear principle compo-
nent analysis problem. This paper reduces the complexity of the
solution by applying the Euclidean Direction Search concept in
place of the matrix inversion lemma. The simulations performed
show that the convergence rate is comparable, albeit slower, but
with reduced complexity per iteration.

1. INTRODUCTION

Blind Source Separation (BSS) is a classic problem in signal pro-
cessing, and has been generalized under the name of Independent
Component Analysis (ICA). For BSS, this problem consists of sep-
arating multiple inputs to a system when only outputs are observ-
able. The objectives in ICA are more generic; a signal model is not
assumed, but rather the procedure aims to identify underlying vari-
ables of some process. However, the formulation and solution for
each are practically identical. Requirements for these algorithms
to succeed are that the sources be independent statistically and that
there be at least as many observed signals as there are sources.

A wide variety of approaches have been taken toward this
problem, with considerable success [2]. However, a persistent is-
sue that remains pertinent is the computational requirements of the
algorithm. Several important advances have been made recently in
improving convergence with applying an RLS-type solution to the
adaptive case [3], with the use of the natural gradient approach [4],
and with using both [1]. These techniques build on a nonlinear
principle component analysis problem posed in [5].

The present work takes this problem formulation and applies
the Euclidean Direction Search (EDS) algorithm to the recursive
solution. In this, we use the same application of the natural gra-
dient used in [1], and simply substitute the EDS methodology in
calculating the update vector. By doing so, we reduce the com-
plexity of the solution for each iteration.

2. GRADIENT DERIVATION

Assume the form of a multiple-input multiple-output mixing sys-
tem to be

xt = Ast (1)
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where st = [s1(t) · · · sn(t)]T is a vector of mutually-independent
scalar-valued inputs to the mixing system A ∈ R

m×n with m ≥
n. The BSS problem is to find an “un-mixing” matrix B ∈ R

n×m

such that yt = Bxt has components that are as independent as
possible.

In our development, we assume that the generalized form in
(1) has already been followed by a whitening filter V ∈ R

n×m

with vt = Vxt such that the components of vt are unit vari-
ance and uncorrelated. The total separating matrix is given as
B = WV, and we seek to find W ∈ R

n×n. Due to the number
of unknown variables which are involved in the mixing process,
the un-mixer is only able to restore the original sources up to an
order permutation and scaling; they will be output at unit variance.
As the observed signals are already whitened by V, W should be
orthogonal (WWT = I).

The basic PCA cost function given in [5] is

J(Wt) = E

j‚‚‚vt − WT
t g(Wtvt)

‚‚‚2
ff

(2)

where g(y) = [g(y1), . . . , g(yn)]T with nonlinear function g(·).
Following the development in [3,6], we replace the expectation of
the mean-squared error in (2) by an exponentially weighted sum,
and we replace g(Wtvt) with zt = g(Wt−1vt):

J(Wt) =
tX

k=1

βt−k
‚‚‚vk − WT

t zk

‚‚‚2

where 0 < β ≤ 1. This yields the matrix of partial derivatives

∇J(Wt) =

tX
k=1

βt−k
n
−zkv

T
k + zkz

T
k Wt

o
. (3)

Conventional gradient descent algorithms update the parameters
in the direction of the partial derivatives. However, if the param-
eter space has the structure of a differentiable manifold other than
R

N , then the matrix of partial derivatives does not point in the
“true gradient direction.” Amari [7] showed that on the space
of invertible matrices, the true gradient direction can be calcu-
lated as a linear transformation on the matrix of partial derivatives:
∇̃J(W) = ∇J(W) · WT W. In this paper, the parameter space
(the manifold) is the set of orthonormal matrices. For this mani-
fold, Edelman et al. [8] showed the relationship between ∇̃J and
∇J to be

∇̃J(W) = WWT · ∇J(W) − W · [∇J(W)]T · W.
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In their development, Zhu and Zhang apply this general form to
(3), which, after some simplification yields

∇̃J(Wt) =
tX

k=1

βt−k
n
−zkv

T
k + ykz

T
k Wt

o
. (4)

Incidentally, this natural gradient modification somewhat resem-
bles the Recursive Instrumental Variable (RIV) twist on the RLS
algorithm in [9].

3. EUCLIDEAN DIRECTION SEARCH

The Euclidean Direction Search (EDS) was first proposed by Xu
and Bose [10–12] as an alternative to the well-known Recursive
Least Squares (RLS) iterative solution. A good introduction to
this technique is presented in Chapter 8 of [13], where it is derived
alongside the RLS algorithm. The key idea in the EDS approach is
that a major simplification (resulting in order-n computations in-
stead of order-n2 for RLS) can be made by calculating the optimal
step size in a gradient descent along a single component, ei.

In a one-dimensional signal processing context, the RLS al-
gorithm uses the matrix inversion lemma to iteratively solve the
normal equation

Q(t)w(t) = r(t)

for w(t) without explicitly inverting Q, since Q is modified at
each time step with a rank-one update. In [13], the EDS algo-
rithm is derived with the same objectives, but takes the approach
of finding the best step size α for minimizing the value of the cost
function Jt(w+αh). When the direction h is chosen to be one of
ei = [0 · · · 0 1 0 · · · 0], where the 1 appears in the i-th position,
the formula which yields this optimal step size

∇α � ∂Jt(w + αh)

∂α
= 0

is greatly simplified.
Ideally, at each time step n, this optimal step size and update

would be performed for each of the parameters which are being
estimated. However, the result is that the complexity of the solu-
tion remains order-n2. A variation of the EDS making it suitable
for real-time implementations is known as the Fast Euclidean Di-
rection Search (FEDS). This algorithm differs in that at each time
step, only a single parameter is updated. There are also some mi-
nor computational adjustments which need to be made. This re-
sults in moderately degraded performance, but also produces an
order-n solution. A more thorough comparison between EDS and
FEDS as well as simulations can be found in [13].

4. EDS-TYPE SOLUTION TO BSS

The work of Zhu and Zhang [1] does not precisely apply the tra-
ditional RLS algorithm to the BSS problem, but rather uses the
matrix inversion lemma to solve ∇̃J = 0 efficiently. In this pa-
per, computational efficiency is achieved using the concept of an
optimal step size in a Euclidean direction.

Consider minimizing with respect to α the function

J(W + αEij),

with Eij an n × n matrix whose elements are all 0 except for a
1 at element (i, j). As such, it is an update to a single element of

W. Then, applying the chain rule,

∂J(W + αEij)

∂α
=
X
k,l

"
∂J

∂Wkl

˛̨̨
˛
W+αEij

· ∂(W + αEij)kl

∂α| {z }
=δk−iδl−j

#

=

"
∂J

∂W

˛̨̨
˛
W+αEij

#
(i,j).

So, each element (i, j) of the gradient matrix is simply element
(i, j) of ∇J(W + αEij). Applying this to (3), we have

[∇J(W + αEij)]ij

=

"
tX

k=1

βt−k
n
−zkv

T
k + zkz

T
k (Wt + αEij)

o#
ij

=

tX
k=1

βt−k

j
− [zk]i

h
vT

k

i
j
+ [zk]i

h
zT

k Wt

i
j

+ α [zk]i

h
zT

k

i
i

ff
= 0

which we set equal to zero in our search for the value of α which
yields minimum cost. Solving for α leads to

α =

Pt
k=1 βt−k

“
[zk]i

ˆ
vT

k

˜
j
− [zk]i z

T
k W

(j)
t

”
Pt

k=1 βt−k [zk]2i
,

where W
(j)
t indicates the j-th column of Wt, and we get the value

for the update of element (i, j) of Wt. For the natural gradient
formulation in (4) we get,

α =

Pt
k=1 βt−k

“
[zk]i

ˆ
vT

k

˜
j
− [yk]i z

T
k W

(j)
t

”
Pt

k=1 βt−k [yk]i [zk]i
.

The implementation which follows should be executed in its en-
tirety for each i, j:

yt = Wt−1vt

zt = g(yt)

Qt = βQt−1 + ztv
T
t

Pt = βPt−1 + ytz
T
t

α =
h
(Qt)ij + (Pt)iW

(j)
t−1

i
/ (Pt)ii

Wt = Wt−1 + αEij .

When the FEDS algorithm is implemented, it requires 2n2 +
3n operations per iteration, compared to 9n2 + 2n for [1]. This
is considered to be a useful improvement, particularly for higher
values of n.

The quest for a true order-n algorithm, where n is the num-
ber of sources, was the original aim of this work. However, for n
sources there are n2 parameters which need to be determined, in
the W matrix (or at least n(n − 1)/2, since W should be orthog-
onal). Hence, an order-n algorithm may not be reasonable.
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Table 1. Operations per Iteration

Algorithm Operations For n = 5

Douglas [4] 7n2 175

Pajunen [3] 5n2 + 3n 140

Zhu [1] 9n2 + 2n 235

EDS (2n2 + 3n) · n2 1625

FEDS 2n2 + 3n 65

Other algorithms which laid an essential foundation for this
work were developed by Pajunen [3] and Douglas [4]. Pajunen
established how a least-squares approach can solve the nonlinear
PCA criterion, providing a better convergence rate for the BSS
problem than the traditional gradient approaches. Douglas’s work
is a rather purist approach to the adaptation which needs to be
done, and with the use of the natural gradient, the un-mixing ma-
trix W is completely orthogonal at every iteration. In Table 1,
the relevant algorithms are compared with respect to the number
of operations (multiplications) required to complete a single iter-
ation. In addition, the general expression for the operations per
iteration is evaluated at n = 5.

5. SIMULATION RESULTS

A simulation setting identical to that used in [1] was run, with

st =

2
6664

sign(cos(2π155t))
sin(2π800t)

sin(2π300t + 6 cos(2π60t))
sin(2π90t)

n(t)

3
7775

where n(t) ∼ U(−1, 1). The signals were mixed with a random
matrix and sampled at 10kHz. The results are shown in Figs. 1–4.
The criterion for evaluating the performance of each algorithm is
also taken from [1]:

PI =
nX

i=1

 
nX

j=1

|cij |
maxk |cik| − 1

!
+

nX
j=1

 
nX

i=1

|cij |
maxk |ckj | − 1

!

where C = WA = {cij} is the combined mixing-separating
matrix.

Several different variations on the value for β were experi-
mented with. Since the signals used were stationary, instead of a
single value for β, a time-varying β(t) was used. The exception
to this approach was for the EDS-gradient, which used β = 0.983
for all t. For Zhu [1] and the EDS-natural gradient,

β(t) = λβ(t − 1) + (1 − λ)

with β(0) = 0.94 and λ = 0.995, borrowing this form from [9].
For Pajunen [3], FEDS-gradient and FEDS-natural gradient,

β(t) =

(
λβ(t − 1) + (1 − λ) while β(t − 1) ≤ .99

0.99 ever after.

It is known (see [14]) that the RLS algorithm may become
unstable, and this is assumed to be the phenomena observed in the
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Fig. 1. Averaged results over 1000 runs of the 4 algorithms.
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Fig. 2. Simulation results with the x-axis scaled differently for
each algorithm according to the number of operations required for
each iteration, as given in Table 1.
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Fig. 3. Averaged results over 1000 runs of the various EDS algo-
rithms.
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Fig. 4. Simulation results for the EDS and FEDS algorithms, with
and without the natural gradient. The x-axis is scaled according to
the operations per iteration in Table 1.

Pajunen algorithm in Fig. 1. Since [1] is also RLS-based, it is
conceivable that instability may also result with this approach, but
EDS-type algorithms are not subject to this type of instability.

In short, the EDS algorithm should be added to the list of al-
gorithms which “can be used for solving the weight matrix W(t)
iteratively” [3, page 6].

6. FUTURE WORK

Using the jargon of Differential Geometry, the EDS algorithm con-
sists of searching for a minimum along a one-dimensional sub-
manifold (formed by taking a single element of the preferred co-
ordinate patch) of the cost space. This problem should be couched
completely in a Differential Geometry setting, uniting the concepts
of a search along a one-dimensional submanifold with the natural
gradient, both of which belong in that realm.
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