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ABSTRACT

Underdetermined blind source separation is a key applica-
tion in audio where it is desirable to extract multiple sources
from a stereo recording. A new variant on the stereo match-
ing pursuit, the dual matching pursuit, is presented whereby
independent matching pursuits are run on both channels of
a stereo mixture of greater than two sources. By identify-
ing correlating atoms from each decomposition, a histogram
plot is applied to identify the position of each source in the
stereo image and the atoms grouped to recover the orig-
inal signals. To improve the atomic correlation between
channels, a fixed overcomplete representation for each of
the signal types present in the mixtures is obtained by ap-
plying a learning algorithm to existing sources of that type
and reducing the redundancy in the resulting basis set via
a correlation-based algorithm. The resulting dictionaries
are then used as a time-frequency basis for the independent
matching pursuits. The results show improved separation
quality compared to the dual matching pursuit with mathe-
matical time-frequency dictionaries. The noise immunity of
this method due to the use of overcomplete representations
is also demonstrated showing that the system can withstand
mixture signal-to-noise ratios down to 30dB.

1. INTRODUCTION

Underdetermined blind separation has been achieved using
overcomplete methods, both mathematical [1] and learned
[2]. Separation quality is always significantly lower than
the determined case where methods such as independent
component analysis can be used. Here, a system using a
combination of the two previously described methods is de-
scribed, allowing good quality separation of several sources
from stereo mixtures.

We can model noisy stereo audio as a mixture of I sources
as follows

yc(t) =
I∑

i=1

xi(t) + nc(t), c = l, r (1)

where we assume that the mixing environment is stationary
and linear. A panpot parameter Θi is used to describe the
mixing balance between channels; Θi = 0 represents a sig-
nal i solely in the left channel and Θi = π/2 a source solely
in the right channel. The stereo mixture y(t) = (yl(t), yr(t))
can therefore be modelled as

y(t) =
I∑

i=1

λi(cosΘi xi(t), sinΘi xi(t)) + n(t) (2)

where λi is a gain parameter.
The majority of audio sources can be described as vec-

tors in a Hilbert space H. Signal xi can have a sparse
decomposition in a basis function dictionary D such that
xi =

∑
k ai,kgk where gk ∈ D and {ai,k} has a fast decay

as k → ∞. Hence, these signals can be decomposed effec-
tively using an iterative algorithm like the matching pursuit
[3].

2. DUAL MATCHING PURSUIT

The stereo matching pursuit described in [1] demonstrated
a novel means of exploiting the correlations between the
channels of stereo recordings in order to achieve underde-
termined separation. One disadvantage of this system is that
each atom calculated in the pursuit is the result of a mini-
mization of the residual across both channels. This results in
a fully correlated decomposition of both channels (as all re-
sulting atoms have a coefficient in both yl and yr) but possi-
bly compromises the effectiveness of the original algorithm
in relation to the matching pursuit.

The dual matching pursuit uses independent matching
pursuits on each channel, eliminating this problem. The cost
of this approach that full atomic correlation between chan-
nels is highly unlikely. However, the logarithmic decay of
the residual during the matching pursuit means that most of
the energy within the signal is removed during the initial
iterations. These high-energy atoms are the most likely to
provide a match between the two decompositions as they
represent fundamental parts of the mixed signals. Hence,
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the unmatched atoms are likely to be of lesser amplitude and
their absence will not adversely effect the separated signal.

With dictionary D, we decompose each mixture y(t) us-
ing the standard matching pursuit ([3]). For a decomposi-
tion of y(t) into M − 1 ≥ 0 atoms, an M-atom matching
pursuit is obtained the following way:

1. Compute |〈RM−1, g〉| for all g ∈ D
2. Select the best atom of the dictionary using

gm := arg max
g∈D

|〈RM−1, g〉| (3)

3. Compute the new residual

RM (t) := RM−1(t) − αmgm(t) (4)

with αm := 〈RM−1gM 〉.
At this point, we make the assumption that each individ-

ual atom calculated from the matching pursuit is strongly
associated with a particular source i. This is reasonable, as
uncorrelated sources have a low probability of sharing ele-
ments localized in both frequency and time. The implication
of this is that an atom appearing in both channel decompo-
sitions should have coefficients that reflect the panpot pa-
rameter θ of the original mixture. Therefore, if atom gm,L,
obtained from iteration m of the left channel matching pur-
suit, also appears at iteration n from the matching pursuit of
the right channel then the coefficient values can be used to
calculate θm,n using

θm,n = tan−1

(
αm,L

αn,R

)
(5)

where αm,L and αn,R are the left and right coefficients re-
spectively. When all atoms are correlated between channels,
the resulting values of θn are analyzed using a histogram
plot. The resulting peaks of such a plot should correspond
to the individual panpot parameters Θ.

We can obtain a demixing matrix from the values of
Θ obtained from the histogram. However, linear demixing
cannot completely separate the sources in the overcomplete
case (M > 2). In order to recover the sources, the his-
togram is divided into Î clusters Ki := {m : m ∈ Ki}.
Summing the components of each cluster then gives us a
nonlinear estimate of the source (including gain)

λ̂ixi :=
∑

m∈Ki

αmgm (6)

This method is derived from the stereo matching pursuit al-
gorithm of [1]. Here, a mathematical time-frequency basis,
the multiscale Gabor dictionary, is used to decompose sig-
nals using the matching pursuit. Cosine packets [4] can also
be used to a similar effect.

Improvement to the separation quality can be obtained
by increasing the correlation of atoms between channels.
This can be achieved by selecting a dictionary that can span
the original source signals in a sparse manner more effi-
ciently than traditional time-frequency sets. The learned
overcomplete representation [5], [6] is a means of determin-
ing an overcomplete basis φi for a signal si(t) using a max-
imum likelihood and gaussian around the posterior fit. In
[7] this system was used to create large signal dictionaries
Φ = [φ1 . . . φi] by learning representations for i sources of
a certain type and then reduced in size to create Dr using a
correlation based algorithm with negligible effect represen-
tation quality. It is possible to use the instances of Dr for
underdetermined blind source separation with a linear pro-
gram solver as shown in [7]. Here, the instances of Dr are
used as a basis for the matching pursuit.

Using the learning algorithm in equation 7, an overcom-
plete signal dictionary of size q with element length n can
be learned from an individual source.

∆A = AAT δ

δA
log P (x|A) ≈ −A(φŝŝT + I) (7)

where A is a q × n matrix where the the resulting elements
are stored and φ(ŝi) = δ log P (sk)/δŝi and is the cost func-
tion.
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Fig. 1. An example of the tradeoff between number of
elements in an overcomplete source dictionary and mean-
square error after decomposition of a source of the same
type. A good compromise point is at around 100 elements.

A selection of p speech signals from the same or simi-
lar source were analyzed using [5] and a basis function set
of q was obtained from each. These sets were combined to
produce a set of z = p × q functions Φ = (φ1 . . . φz). A
correlation table Λ was built, whereby individual functions
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were compared with each other function and the l most sim-
ilar found as seen in equation 8.

Λ = max
1...l

(corr(ΦT ,1 · Φ)) (8)

Using Λ, the most similar elements of the combined library
can be removed. The results in [7] show that a 40-60% of
elements could be removed whilst retaining the ability of
the library to represent signals from a similar source. An
example of this tradeoff between number of elements and
effectiveness of representation (in terms of mean-square er-
ror) can be seen in Figure 1. The reduced library can be
used in conjunction with the dual matching pursuit as it can
be considered to span the source variables effectively.

3. RESULTS

For the simulations, four different source types sampled at
8kHz and n = 214 samples long (approx. 2 seconds) were
used. These were selected to represent a wide variety of
frequencies and sound textures. Sources one to four were
an acoustic guitar, a synthesizer, a vocal harmony and an
electric bass respectively.

From ten samples of each source type, 64 basis func-
tions were learned making a total of 64 × 10 × 4 = 2560
elements in the learned library. Using the technique from
[7], the error trade-off allowed a reduction to a total of 1260
elements. This basis set was then used for the dual matching
pursuit.

Stereo mixtures were made as in equation 2. The four
sources were evenly spaced between 0 and π/2, i.e. Θ =
[π/10 π/5 3π/10 2π/5] and gain was uniform i.e. λ =
[1 1 1 1]. These parameters were chosen for clarity
and can be varied freely. For each matching pursuit, a to-
tal M = 1200 iterations was used. If atoms were repeated
during the matching pursuit, the coefficients were summed
before the θ calculation in equation 5. For comparison, a
matching pursuit using cosine packets was also performed.

3.1. Qualitative Results

Figure 2 shows the histogram plot for the dual matching
pursuit using both cosine packets and the learned basis. The
learned basis provides a considerably more defined set of
peaks, especially for the fourth source. The channel cor-
relation is higher using the learned basis with 85% of iter-
ations matching compared to only 53% using cosine pack-
ets. Recovering the sources using the clustering method and
equation 6 obtained signal-to-noise ratio (SNR) results of
between 26dB and 30dB. Waveform plots can be seen in
Figure 3. They clearly show that the learned dictionary pro-
vides a superior fit to the signal in comparison to the cosine
packet method.
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Fig. 2. Histogram plot of the values of θ obtained from
the dual matching pursuit using both a cosine packet and a
learned reduced basis. The range 0 to π/2 is divided into
100 bins.
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Fig. 3. Waveform plots of 100 samples from sources 1 to
4 (top to bottom) (solid line) and inferred sources using the
dual matching pursuit using the cosine packet basis (•) and
the learned reduced basis (· · ·).
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One advantage of using sparse decomposition is the pro-
vision of a certain amount of noise immunity. When us-
ing traditional Independent Component Analysis (ICA) for
source separation, noise is not generally considered as it
makes the pdf estimation integral intractable [8]. To test the
noise immunity of the dual matching pursuit using a learned
basis, additive white Gaussian noise (AWGN) was added
to each stereo mixture, creating SNRs of 10dB to 70dB at
10dB intervals. Figure 4 shows the SNRs for the recovered
sources at each noise level. At very low SNRs, the separated
results are poorer than the original mixtures due to low atom
correlation between channels. Above 30dB, SNR of the re-
covered sources stays relatively constant, suggesting noise
immunity above this level. The small glitch at 40dB is most
likely due to the particular suitability of the learned dictio-
nary elements at this specific noise level.
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Fig. 4. Plot showing recovered source SNR against varying
levels of AWGN added to the stereo mixture.

3.2. Subjective Quality

In terms of the perceived quality of separation, due to the
fact that some of the information is lost due to atoms not cor-
relating between channels, perfect reconstruction will not be
possible using this method and there is an obvious degrada-
tion of quality in all sources. Despite this, separation is of
good quality in sources where there are few transients, as in
the case of the vocal harmony, or where the sound is struc-
tured as in the synthesizer sample. The least successful is
the acoustic guitar, where the picking transients are not well
represented.

In comparison to the separation achieved with cosine
packets, all sources were superior with the exception of the
synthesizer, which particularly suited to the sinusoidal na-

ture of the cosine packets. In this case, the separation qual-
ity was about equal between the methods.

4. CONCLUSION

It can be seen that the dual matching pursuit is an effective
means of performing underdetermined blind source separa-
tion. It is also demonstrated that using a learned basis func-
tion dictionary as a decomposition set for the dual match-
ing pursuit has produced superior separation quality com-
pared to the use of traditional time-frequency dictionaries.
Finally, experiments with varying degrees of gaussian noise
in the source mixtures show that the dual matching pursuit
method has a reasonable noise immunity and that separation
quality is relatively constant above SNRs in excess of 30dB.
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