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ABSTRACT

This paper presents a new and unifying view at multiple-input
multiple-output instantaneous blind identification based on the main
assumptions that the cross-cumulant functions of the source sig-
nals of some arbitrary fixed order vanish for all time tuples and that
the source auto-cumulant functions of the same order are linearly
independent. Hence, the time structure of the signals is exploited.
The main goal of the paper is to provide new insight into the alge-
braic and geometric structure of the problem, which is crucial for
the development of solutions. The presented viewpoint is unifying
in two senses. Firstly, the developed theory is general with respect
to the considered order of the cumulants. Secondly, all types of
statistical variability in the data, for example, the nonstationarity
and the nonwhiteness, are incorporated into the problem in a uni-
fied manner.

1. INTRODUCTION

This paper is concerned with the Multiple-Input Multiple-Output
(MIMO) Instantaneous Blind Identification (IBI) problem, shortly
denoted by BI. In this problem, a number of mutually statistically
independent sources are mixed by a MIMO instantaneous mixing
system and only the mixed signals are available. The goal is to re-
cover the mixing system from the observed mixtures of the sources
only. It is widely recognized that many possible applications exist
for BI. Common examples where Bl is applied (in)directly are In-
stantaneous Blind Signal Separation (IBSS) and Direction Of Ar-
rival (DOA) estimation. IBSS is slightly different from BI in the
sense that the main goal is to recover the source signals instead of
the mixing system. Several examples of IBSS can be found in the
field of biomedical engineering, where the goal of several applica-
tions is to reveal independent sources in different kinds of signals
like EEG’s, ECG’s, etc. DOA is in fact a parametrized version of
BI. Several examples of DOA can be found in applications involv-
ing radar, sonar, etc. Many methods and algorithms for performing
BI have been developed during the last decade. See, for example,
[1], [2] and the references therein. Most of these methods can be
classified into three distinctive approaches. The first approach ex-
ploits the non-Gaussianity of the sources and requires the use of
higher order statistics (HOS) [2, 3]. The second approach assumes
that the sources are spatially uncorrelated and all have temporal
correlation on some domain of support, see, for example, [1], [2],
[4] and the references therein. Finally, the third approach allows
the exploitation of the nonstationarity of the sources under the as-
sumption that the sources have different nonstationarity properties
[5]. The latter two approaches are both subclasses of the same uni-
fying principle, namely the exploitation of the second order time
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structure of the signals. This paper is a generalization of a part
of the work presented in [6]. It presents a new and unifying view
at BI based on the main assumptions that the cross-cumulant func-
tions of the source signals of some arbitrary fixed order are zero for
all time tuples and that the source auto-cumulant functions of the
same order are linearly independent, thereby exploiting the time
structure of the signals for some arbitrary order. The first assump-
tion is reasonable because many signals arising in practical situa-
tions are generated independently of each other by physically dif-
ferent sources at different positions, and the second because these
sources have in general different temporal characteristics. Due to
space limitations, the proofs for the results in the paper have been
omitted and will be published in a subsequent paper. Based on
the new insight, solutions that are general with respect to the order
of the used cumulants can be developed. The paper also provides
a basis for understanding and solving more advanced problems,
such as the blind identification of convolutive MIMO systems.

The outline of the paper is as follows. Firstly, the used nota-
tion is introduced in Section 2, along with some definitions. Next,
the considered BI model (including assumptions) is explained in
detail in Section 3. Then, the algebraic and geometric structure of
this model are discussed in Section 4, along with some examples.
Finally, the conclusions are discussed in Section 5.

2. NOTATION AND DEFINITIONS

Both sub- and superscript indices are used to index quantities. Col-
umn vectors are denoted by lower case boldface letters, e.g. v, and
their elements are indexed by superscript indices, e.g. v = [vq
The vector space of real column vectors of length N is denoted by
RY. Matrices are denoted by upper case boldface letters, e.g. V.
The elements of matrices are denoted by lower case letters with
both sub- and superscript indices, e.g. V = [v;] . The superscript
indices correspond to row indices and the subscript indices cor-
respond to column indices (see (4), for example). The space of
matrices of size M by N with real-valued elements is denoted by
RA . Usually, the dimensions of matrices and vectors are clear
from the context, otherwise they are stated explicitly. The linear
span of a set of vectors ) in a linear vector space is denoted by
L(V). The cardinality of a set Z is denoted by |Z|.

Discrete-time functions and signals have their time index be-
tween square brackets. For example, x[n] represents a signal vec-
tor containing signal values at discrete time n and z*[n] denotes its
i-th component. Finally, the operator that gives the expected value
of a random variable will be denoted by E{-}. For convenience,
some additional notations and definitions are given and then ex-
plained (p and G are positive integers):
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The symbol #'7 is merely a shorthand notation for the product
v™t ..o, An ordered tuple of integers like i, is used for three
purposes. Firstly, the indices in a tuple can be used as running vari-
ables in summations or products. Secondly, the indices in a tuple
can be used as free indices. Finally, a tuple can contain discrete
time indices, in which case it is used as a p-dimensional argument
to functions. Typically, the symbols i, and j, denote tuples used
for the first two purposes, while the symbol n, denotes a tuple of
discrete time indices. The tuple (%), is a shorthand notation for i,
that is used when all indices are equal. The subscript ’t’ in the set
Iﬁ) stands for "total” because all indices in the tuple range from 1
to G. Likewise, the subscript ’a’ in pr stands for “ascending” be-
cause the indices in the tuple are ordered in ascending order. The
subscript 'e’ in Igp stands for “equal” because only those tuples
are in the set whose indices are equal. Finally, the subscript '¢’
in Iffp stands for “cross” because only those tuples are in the set
whose indices are unequal or “’cross”.

Given a length-G time dependent random vector v[n], the p-th

order cross-cumulant function .’ [n,] of a subset {v**[n1], ...,
v'?[np]} of p components indexed by i1, . . . , i, at possibly differ-
ent times n1, . .., ny is defined as:

K [n,] £ cum <’Ui1 [n1],...,0" [np}) Vi, € IC,, Y n, € Zy,

where cum(-,...,-) denotes the multi-argument cumulant func-
tion. See [7] for a detailed discussion about cumulants.

3. BIMODEL

An instantaneous mixing model with S source and D sensor sig-
nals is considered. Both the source and the sensor signals are as-
sumed to be real-valued. The sensor signals z*[n] are given by:

s
mi[n]zza;isj[n] V1<i<D,VneLZ, )

j=1
where a is the real instantaneous transfer from the j-th source to

the i-th sensor and s?[n] is the j-th source signal at time n. In
matrix notation, (2) is written as:

5
x[n] = As[n| = Z ajs’[n] Vnez, 3)
where =
z'[n)] s'[n) a;
x[n] £ . , s[n] = . and a; £
zP[n] s%[n) ay

are vectors of sensor signals, source signals, and mixing elements
respectively. The vectors x[n] and a; are elements of R”, while
s[n] is an element of R¥. The real-valued mixing matrix A of size
D by S can be written as:

al - ah
. . . D
A= . - | €Rs. 4)
af) ... ag
The number of sources S may be smaller than, equal to, or larger
than the number of sensors D. Considering [-th order cumulants,

the main assumptions for the BI model, on which the results in this
paper are based, are given in the following list:

o ASI: The mixing matrix A is an element of RS and
rank(A) = min(D, S), i.e. A is full rank

e AS2: If D < S, each tuple of D different columns is lin-
early independent

o AS3: The source signals are zero mean real-valued pro-
cesses with zero l-th order cross-cumulant functions

o AS4: The l-th order source auto-cumulant functions are lin-
early independent.

Two indeterminacies are involved in blind identification that can-
not be resolved without any prior knowledge. Firstly, from (3) it is
clear that permuting the columns of A together with an equal per-
mutation of the source signals in s[n] still yields the same vector
of sensor signals x[n]. This means that the order of the columns,
respectively sources, cannot be determined. Secondly, as is also
clear from (3), scaling the columns of A together with a corre-
sponding inverse scaling of the source signals in s[n] also yields
the same vector of sensor signals x[n]. This means that the columns
and sources can only be recovered up to a scale factor. Taking into
account these two indeterminacies, the goal of BI is to recover
the columns of the mixing system in arbitrary order and with ar-
bitrary scaling, i.e. an estimate A of the mixing system ideally
satisfies A = APD, where P is some permutation matrix and
D is some nonsingular diagonal matrix (P, De Rg) For many
applications in BI, most relevant information is in the “directions”
of the columns rather than in their order or magnitudes.

4. ALGEBRAIC AND GEOMETRIC STRUCTURE

Intuitively it is clear that all information about the mixing sys-
tem that can be deduced from the set of l-th order sensor cumu-
lant functions is present in the interrelationships between all these
functions. It will be shown in this section that when AS1-AS4 are
satisfied, these interrelationships can be represented by a system
of homogeneous polynomial equations satisfied by the elements
of the columns of the mixing matrix. Several aspects of the alge-
braic and geometric structure of BI will be highlighted.

4.1. Linear span of sensor cumulant functions

AS3 and AS4 only need to hold over some finite region of support
(ROS) Q5! C Z; in the domain of length-I time tuples, i.e. the
n;-domain. This ROS can be specified by a set of time tuples for
which the condition holds. In practice, Q%' has to be chosen in
such a way that the conditions in AS7-AS4 hold. Furthermore, the
tuples n; € Q%! can be chosen in such a way that different types
of [-th order statistical information in the data are exploited. For
example, if it is desired to exploit both the nonstationarity and the
nonwhiteness of the source signals, the “time-distance” between
different tuples must be large enough in order to exploit the non-
stationarity, e.g. p must be large enough for two different tuples
n; and n; + p - (1);, and n1 # na # - - - # ny for some tuples in
order to exploit the nonwhiteness. The values of a sensor cumulant
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function for different time tuples are used in the same way. Hence,
all types of statistical variability in the data can be incorporated
into the problem in a unified manner. In the sequel, it is tacitly
assumed that all real-valued functions depending on the integer-
valued time tuple n; are defined only over Q5'. For example, AS3
implies that the [-th order source cross-cumulant functions vanish
on Q5L

KUy 2 cum(sil [na], ..., s" [m]) =0V i€l Vel

Using AS3 and AS4, together with the properties of cumulants, all

I-th order sensor cumulant functions {x} [nl}}”eltl can be ex-
pressed in the [-th order source auto-cumulant functions as fol-
lows:

K ny] Za m(J)‘[nl] VlzGZl,aneQ N 6))

Jj=1
From this equatlon it can easily be seen that Kl ) ==«
for all i, € Il’l and for all possible permutations ¢ of the in-
dices in i;. Hence, the sensor cumulant functions are only es-
sentially different for the set of index-tuples Z2, 7 with cardinal-
lty |I | (D+l—1)

(ki ] }€%7 is considered instead of {![n;]}*€%1. From
ASI-AS4, it can be proven that the following proposition holds
with probability 1 when the columns of A are drawn indepen-
dently from a continuous probability density distribution:

Proposition 1 Assume that AS1-AS4 are satisfied and (” +ll’1) >
. then £ ({rl (] <51 ) = £ ({rl ] <50 ).

Hence, the linear vector space spanned by the sensor cumulant
functions equals the space spanned by the source auto-cumulant
functions. Note that this is intuitively clear from (5) when the
transformation defined by the a” ’

U(z)[ 1]

(see (1le)). Therefore, in the sequel the set

s is full rank.

4.2. Derivation of system of homogeneous polynomial equa-
tions satisfied by columns of mixing matrix

Proposition 1 and AS4 imply that dim <E ({n‘zl [nl]}ilezef)l)) =

; i iyez’
dim (c ({Ks [y] i€
of functions (PT/") in the set {! (]} €7 s larger than the
number of sources S, the sensor cumulant functions are linearly

dependent. This implies that there exist nonzero and non-unique
sets of coefficients {ga?l }ilerl indexed by an (arbitrarily integer-

) = S. Therefore, when the number

valued) index ¢ such that:

Z gpll/il[nl—O Vge Q, Vn, € QY. 6)
1161'&’
The index ¢ is chosen to be an element of the set @ 2 {1,...,Q},

where @ is the maximum number of linearly independent equa-
tions in (6). The information about the mixing system that is
present in the sensor cumulant functions can be represented by the
set ¢ 2 el }ilezﬁ }9€€_ The value of @Q and a nontrivial set &
can be computed from the available data using the Singular Value
Decomposition (SVD) of the sensor cumulant functions, which is
briefly discussed in Section 4.3. Note that all linear combinations
of the sets in @ also satisty (6). Now, substituting (5) into (6) and
using AS4, it can be shown that:

D oplal =0 VgeQ, 1<j<S. (7
11,€Iuv

This system of equations describes the relation between the coef-
ficients of the mixing matrix A and the set of coefficients &. It
can easily be seen that the unknowns {a} }12;2? in each individ-
ual equation are the elements of one column a; of A. Hence, all
columns ai, ..., ag satisfy the same system of polynomial equa-
tions. More specifically, let z = [z*,...,2P]" be an arbitrary
column of A, then (7) states that each column z of A satisfies the
following system of D-variate polynomial equations of degree [:

an,l =0 VqeQ. (8
1161'31
Each fi(z) = f7 (2!
polynomial, meaning that (denoting 7 to the power I by (n)"):
f(nz) =)' f"(2) VgeQ VneR VzeR". (9
The following implication is immediate from (9):
f(z2)=0Yqe Q= f'(nz) =0Vqe€ Q, VneR. (10)

Hence, if z is a solution of the system {7 (z) = 0}9€<, then also
nz is a solution. For this reason, a constraint has to be imposed on
the norm of the solution vectors z. This is a logical result of the
scaling indeterminacy inherent to BI (see Section 3).

.,zD) is a D-variate l-homogeneous

4.3. Singular value decomposition of cumulant functions
The (function-valued) vector &, [n;], defined by stacking all func-

tions in the set {4 [n;]}" €73 on top of each other, can be written
in "SVD-form™ as k,[n;] = S7_, oru,v*[ny] with the usual
SVD-properties o, € R, (w,,,%,); = 0mn V1 <m,n < N
and (v [y, v"[my]), = ™" V1 < m,n < M. Here, (-, ),
and (-, -), are properly defined inner products, M £ |Q%| and

& |z5) = (PH

by the tuples iz, in correspondence with the way the . [n;]’s

are stacked in &, [n;], each function % [n;] can be written as
ki) = e oruil v [n;]. Now, from (6) and the properties
of the SVD, it follows that all valid choices for the coefficients cp?L
are: pf = Zfzsﬂaflui% Vqge Q, Vi €17, dz» Val eR A
natural choice for the coefficients goiql in (8) is given by goil =
wl g, ie. of = 015, Since dim (£ ({{w,}s41<n<n)) =
N — S, the maximum number of linearly independent equations
in system (8) equals: Q = N — S = (D+ll_1) — S. In prac-
tice, a matrix C,, € R} corresponding to K, [ny] is used as input
to some SVD-algorithm. This matrix is constructed by putting the
M estimated function values {x}n;],n; € Q21 of each function
Kl [n;] in the i;-th row of C,, € Ccy.

). Indexing the elements of the vectors u,,

4.4. Geometric structure

The purpose of this section is to clarify the geometric structure of
the problem. Equation (10) means that the zero contour levels of
the l-homogeneous D-variate polynomials in the set { f7 (z)}9€<
define cones in the D-dimensional space RP . Therefore, geomet-
rically, (7) and (8) signify that the S columns of the mixing matrix
are determined by the intersections between () = (DJFZFI) -5
of these cones. This is illustrated in the following two examples.
Each example deals with a two-sensor scenario because this easily
allows visualization of the involved geometry. Because the pur-
pose of this section is to demonstrate the geometric properties, the
source auto-cumulant functions have been generated at random.
Since the only fundamental assumption on these functions is that
they are linearly independent, this is a completely valid approach.
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Fig. 1. Contour plots of functions in example 1.

It has been verified that simulations with real-world data yield sim-
ilar functions with exactly the same zero contour levels.

Example 1: two sensors, two sources and third order cumulants
In this example with D = 2, S = 2 and [ = 3, the following

mixing matrix is used: A = [J:55 ~0'8> |. The number of linearly

independent equations in (8) equals @ = (**37!) —2 = 2. Using
the SVD method discussed in Section 4.3, (the coefficients of) two
such linearly independent equations can be computed. The con-
tour plots of each of the functions corresponding to the left hand
sides of the two resulting linearly independent equations are plot-
ted in Fig. 1. Each black arrow in a figure denotes a column of the
mixing matrix and each grey arrow is the negative of a black arrow.
The three crossing straight lines through the middle of each of the
figures correspond to the zero contour level of the corresponding
function (in two-dimensional space, cones are described by lines
through the origin). It is evident from the contour plots that the
columns of the mixing matrix are uniquely determined by the in-
tersections between the zero contour levels of the two functions.

Example 2: two sensors, three sources and third order cumulants
In this example with D = 2, S = 3 and [ = 3, the mixing ma-

: 0.85 — . .
trix A = [009 087 _o'4s] is used. Now there is only Q =
(2+3-1

3

) — 3 = 1 equation.

The contour plot of the correspon-
ding function is plotted in Fig. 2.
The three crossing straight lines in -
the middle of the figure correspond o5
to the zero contour level. It can. |
easily be seen that the arrows rep-
resenting the (negative of the)
columns of the mixing matrix are
exactly in the directions of the lines
describing the zero contour level -f—r———r—————>—
of the function, thereby revealing

that all three columns of the mix- Fig. 2. Contour plot of func-
ing matrix are determined uniquely tion in example 2.

by the zero contour level.
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The zero contour level of a D-variate homogenous polynomial
is in general, i.e. the non-degenerate case, a (D — 1)-dimensional
surface embedded in a D-dimensional Euclidian space. From geo-
metric intuition, it is clear that in a D-dimensional space D —1 sur-
faces of dimension D — 1 are required to define one-dimensional
solution sets (lines through the origin), which in the current BI
problem define (scalar multiples of) the columns of A. Heuristi-
cally, from @ = (P*/7') =S > D —1 (each equation defines one
surface), it follows that the maximum number Spax of columns of

A that can be identified equals Smax = (7} 7") — (D —1).

5. CONCLUSIONS

This paper has presented a new and unifying view at Multiple-
Input Multiple-Output Instantaneous Blind Identification based on
the assumptions that the cross-cumulant functions of the source
signals of some arbitrary fixed order [ are zero and that the -
th order source auto-cumulant functions are linearly independent,
thereby exploiting the time structure of the signals. Many real-
world signals satisfy these assumptions. The presented viewpoint
is unifying in two senses. Firstly, the developed theory is general
with respect to the considered order of the cumulants. Secondly, all
types of statistical variability in the data, for example, the nonsta-
tionarity and the nonwhiteness, are incorporated into the problem
in a unified manner. Insight into the algebraic structure of the prob-
lem has been provided by showing that the columns of the mixing
system satisfy a system of D-variate [-homogeneous polynomial
equations, where D is the number of sensors and [ is the consid-
ered cumulant order. Likewise, the geometric structure of the prob-
lem has been clarified by showing that the zero contour levels of
the homogeneous polynomials are cones in D-dimensional space
and that the columns of the mixing matrix are defined by the inter-
sections between all these cones. Furthermore, it has been made
plausible that, given D and [, the maximum number of columns of
the mixing matrix that can be identified equals (D +ll_1) —(D-1).
The new viewpoint can be used to develop new solutions to the BI
problem and also for understanding and tackling more advanced
problems. A possible solution for the BI problem, based on the
developed theory, will be presented in a subsequent paper.
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