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ABSTRACT

We propose an incremental algorithm for independent com-
ponent analysis (ICA), that is guided by the statistical effi-
ciency. Starting from a £°° norm sparseness measure con-
trast function, we derive the learning algorithm based on a
winner-take-all learning mechanism. It avoids the optimiza-
tion of high order non-linear function or density estimation,
which have been used by other ICA methods, such as ne-
gentropy approximation, infomax, and maximum likelihood
estimation based methods. We show that when the latent
independent random variables are super-Gaussian distribu-
tions, the network efficiently extracts the independent com-
ponents. We observed a much faster convergence than other
ICA methods.

1. INTRODUCTION

Recently, there has been a resurgence of interest in indepen-
dent component analysis (ICA) for Blind Source Separation
(BSS). ICA has a wide application in signal and image pro-
cessing, telecommunication, and medical data processing.
Independent Component Analysis (ICA) [1] is a tech-
nique to derive statistically independent components from
random signals. The standard linear data model used in
ICA is as follows. There is an unknown m-dimensional ran-
dom signal source s, whose components are mutually statis-
tically independent. For every time instance ¢ = 1,2, ..., an

unknown random sample vector s(t) = [s1(t), s2(t), ..., 5, (t)] "

is generated from the signal source. There is an unknown
m X m constant, full-rank, mixing matrix A, which trans-
forms each column vector s(t) into an observable vector
x(t): x(t) = As(t), where x(t) = [z1(t), 22(t), ..., 2, ()]
is the m-dimensional vector of observed signals. The goal of
ICA is to find a linear transformation W for the dependent
sensory signals x(t) that makes the recovered signal u(t) as
independent as possible: u(t) = Wx(t) = WAs(t), where
u(t) is an estimation of the source signals. The source sig-
nals s(¢) will be fully recovered when W is the inverse of
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A. However, in practise, it is only possible that u(t) is re-
covered up to a permutation and scaling factors.

Many existing ICA methods aim to optimize certain con-
trast function with respect to the component matrix W. The
contrast function can be kurtosis or negentropy in maximiz-
ing non-Gaussianality methods, mutual information in info-
max method, Maximum Likelihood Estimation (MLE), or
sparseness measure (see [2] for a survey). For example, a
typical method maximize or minimize the expectation of a
non-linear and non-quadratic function G, i.e. E{G(W "x)}
with respect to W, where G(W Tx) gives the information
of high order statistics. The choice of G is crucial, since the
asymptotic variance, robustness and convergence speed of
the estimation depends on it.

In this study, we propose a novel sparseness measure
based on /P norm, and use the sparseness measure as the
contrast function to derive a fast ICA algorithm. To ob-
tain a fast convergence, we utilize the concept of statistical
efficiency, based on which uses amnesic mean instead of
conventional learning rate, which results in the fast conver-
gence.

The paper is organized as follows: In Section 2 we pro-
pose the contrast function. In Section 3 we discuss the ef-
ficiency of a estimator. We give the proposed algorithm in
Section 4, the experiment results in Section 5, and compar-
ison with existing ICA algorithms in Section 6. Section 7
provides conclusions.

2. ¢°° NORM SPARSENESS MEASURE

Sparseness is an important property of super-Gaussian ran-
dom variable. Maximizing sparseness is a desirable strat-
egy that is used by different ICA algorithms. But the mea-
surement of sparseness is not unique. Many heuristic mea-
surements of sparseness were proposed. For example, Ol-
shausen & Field [3] proposed the following form:

Sparse (u) = — Z S (u;), €]
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where Sparse (u) is defined as the sparseness of random
vector u; S(u;) is a component-wise nonlinear function,
and u; are the recovered signals. Olshausen & Field sug-
gest S(u;) to be an even nonnegative function, e.g. —e ",
log (1 +u?), or |u|. Intuitively, when there are more neu-
rons (elements in random vector u) firing at the same time,
the larger the function ) S (u;) would be. Therefore, max-

(]
imizing Eq. 1 will maximize the sparseness.
Karvanen et al. [4] generalized the measure of sparse-
ness to P norm criteria:

Sparse (u) = E (Z |uf|> . (2)

Olshausen & Filed’s sparseness measure is just a special
case of P norm, where p is equal to 1 and |u| being as the S
function. When p = 4, the P norm is related to the widely
used non-Gaussianality measure kurtosis, which is defined
as kurt (u) = E {u*} — 3, where u has unit variance.

Karvanen & Cichocki suggested the range of p should
be in (0, 1], and particularly, a smaller p, such as p = 0.1 or
p = 0.01, should be used. However we found when p — 0o,
it gives a good sparseness measure. Suppose we have the
joint distribution of two independent Laplace random vari-
ables. Each sample is rotated by a rotation matrix. The
mean of /P norms of the rotated samples can be computed.
Figure 1 displays the mean of ¢? norm of different rotation
angles with different p values. It is obvious that the £2 norm
is a straight line, because rotation will not change the Eu-
clidean distance. The extrema of /P norm curve are inverted
on the two side of the £2 norm. Then, to find the indepen-
dent component (in this case it is along the 20 degree and
110 degree directions), one needs to find the minima of the
£P norm with p < 2 or maxima of /7 norm with p > 2.
Of course, this is only true for super-Gaussian symmetrical
distributions.

Another issue is the robustness of the estimation when
noise presents. From Figure 1, we can see almost all the
norm curves agree on the same optima position (except £2
norm), but the norm curves with greater difference between
the maxima and minima will be more robust when in the
presence of noise. So the choice of p can be either close to
zero or close to infinity. Karvanen & Cichocki suggested
smaller p, such as 0.1 or 0.01.

On the other hand, let p — oo we have:

1
P
lim wil? | = max{|u;|}.
lim (Z| 4) {Jul}
(2
So it leads to a simple computation. It can be shown that
the gradient of infinity norm also has a simple form. Thus
the optimization process is relatively easy for the £°° norm
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Fig. 1. The ¢P norm criteria functions under different p. The
data set is projected onto a series of orthogonal basis, and then the
expectation of £P norms of all the projected samples are computed.

sparseness measure. We can define the following contrast
function

"=

=FE {mf)x|u,|} .

3)

Maximizing this function solves the maximizing sparse-

ness problem. Alternatively, the contrast function is written
as

J(w) = E{ lim (Z |ui|”)

J(W) = /mja,x [(w;—x)Q] p(x) dx, 4

where we replace the |u;| with |u;|* = (w x)? for mathe-
matical convenience, since the absolute function is not dif-
ferentiable. Since both functions |z| and z? are monotone
of the same sign around the origin x = 0, Egs. 3 and 4 are
equivalent in terms of maximized solution. So our goal is
to maximize the contrast function with respect to W. It can

be shown that the gradient is given by
dJ(W)/dw; = 26.j(w] x)x, 5)

where ¢ = arg max[(w;rx)z], dc; is the Kronecker delta:

j
0c; = {lif ¢ = j, 0 otherwise}.

3. ESTIMATOR EFFICIENCY

Suppose there are two statistical estimators I'; and I'y for
estimating parameter 6. If E ||T'y — 8||* < E [T — 6|°. Ts
is said to be more statistically efficient than T's.

We consider (w; x)x with ||w;|| = 1 as an “observa-
tion.” The goal is to get the mean of this observation, while
w; is estimated incrementally. It is known that for many
distributions, the sample mean is the most efficient estima-

tor for the mean of the random variable. When the distri-
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bution is unknown, the sample mean is the best linear es-
timator, which results in the minimum error variance. For
many distributions, the sample mean reaches of approaches
the Cramér-Rao bound (CRB).

Then an efficient estimator is one that has the least vari-
ance from the real parameter W, and its variance is bounded
below by the CRB. Thus, we estimate an independent com-
ponent vectors w; by the sample mean of the observation
(w] x)x.

The sample mean uses a batch method. For incremental
estimation, during which W is continuously improved, we
use what is called an amnesic mean [5].

™ = o (n) 2" + 8 (n) 2, (6)

where (™ is the mean at the n-th iteration, x,, is the n-th
sample, and « (n) and 8 (n) are defined by

n—1-—pn)

a(n) = — (N
and )
Blmy = L) ®)

u(n) is a non-negative small function that discounts old
estimate and gives more weight to the new observation x,,
at time n. When p(n) = 0, (™ is exactly the sample mean.

The algorithm is guided by the statistical efficiency, but
it is not absolutely the most efficient one, because

1. the true distribution of the observation is unknown;

2. the distribution changes with W being incrementally
estimated and therefore,

3. amnesic average is used to gradually discount “old”
observations, which reduces the statistical efficiency
moderately.

4. THE QUASI-OPTIMAL ICA ALGORITHM

The quasi-optimal ICA Algorithm is base on Eq. 5 and also
considers the statistically efficient estimation. The algo-
rithm computes the separating matrix W = [wy, wa, ..., Wg],
k < m, from whitened samples x;,Xz, ..., where k is the
number of principal component vectors determined by the
pre-whitening step. The algorithm is shown in Algorithm 1.

5. RESULTS

We have tested the algorithm on a simulation of the cocktail
party problem. Nine sound sources are mixed by an ran-
domly chosen full rank matrix. Each sound source is 6.25
seconds long and the sampling rate is 8.0KHz in 8 bits mono
format. Therefore, each sound source contains 50,000 val-
ues.

Algorithm 1 Quasi-optimal ICA
w; =x%x;,1=0,1,2,..., k.
2n;=1,1=1,2,...,k.

3: fort=1,2,...do

w; (ni)T'xtl

[wi (na)]

4: j =argmax {
i

5. Update the independent component vector w;(n;)
by the following updating rule:

w;(n;+1) = a(n;)w;(n;)+6(n;) I X¢,

w; ()l

where w;(n;) is the component vector w; after the
n;-th updating, a(n;) and B(n;) are given in Egs. 7
and 8§, respectively.

6: n; =n; + 1.

7: end for

Fig. 2(a) shows one of the nine original source signals.
Fig. 2(b) displays one of the nine mixed sound signals. The
mixed signals are first whitened, then we applied the pro-
posed algorithm to the mixed sound signals. It is worth not-
ing that the proposed algorithm is an incremental method.
Therefore, unlike other batch ICA method doing iterations
on the date set, we have used data only once and then dis-
carded them. The result is shown in Fig. 2(c). The indepen-
dent components quickly converge to the true ones, with a
good approximation as early as 1.5 second.

6. COMPARISON

We have also tested the efficiency of the proposed algorithm
for high dimensional data. It is known that the ICA algo-
rithms are “data grizzlies”. Typically, even for a low dimen-
sional simulation task, ICA algorithms need thousands of
samples to evaluate the independent components. Conver-
gence speed in the number of samples used in training is a
good evaluation of the efficiency of ICA algorithms.

In this experiment, we proceed to compare different ICA
algorithms in terms of number of training samples required.
We have chosen FastICA [6] algorithm and Extended In-
fomax [7] as the comparison benchmark due to their pop-
ularity and superior convergence properties. The original
signals were drawn from a i.i.d Laplace (double exponen-
tial) random vector with dimensionality of 100. The origi-
nal signals are mixed with a randomly chosen full rank ma-
trix, whose dimensionality is 100 x 100. The data were then
pre-whitened, and thus the mixing matrix is only a rotation
transformation. We then applied the proposed algorithm to
the mixed data. The result is shown in Fig. 3, where X axis
marks the number of training samples and Y axis indicates
the Basis Distance Index (BDI) between the current inde-
pendent components (ICs) and the ground truth. The BDI is
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Fig. 2. Cocktail party problem. (a) A music sound clip in its
original form. It is one of the nine sound sources. (b) One of the
nine mixed sound signals. (c) The recovered music sound wave.
Comparing to (a), the sound signal is recovered well after approx-
imately 1.5 second.

the average angle (in radian) between the ground truth vec-
tors and the corresponding estimated ICs. Thus, the lower
BDI the better.

Apparently, the proposed method, which is referred as
“LCA” in Figure 3, converges much faster than the bench-
mark methods, where “LCA with fixed m” and “LCA with
dynamic m” are proposed algorithm with two different ways
to compute the amnesic function p(n). FastICA method
gains good accuracy, better than two aforementioned LCA
algorithms, but only after a large number of inputs. But an-
other variate of the proposed algorithm referred as “LCA
eliminating cells”, which involves dynamic eliminating un-
necessary components, outperforms the FastICA algorithm
both in speed of convergence and the final accuracy. Ex-
tended Infomax algorithm needs much more samples, there-
fore it did not get near the true value in our high dimensional
tests.

7. CONCLUSION

The proposed quasi-optimal ICA algorithm is simple and
fast under multiple demanding computational requirements:
high dimensional, incremental and free of higher order statis-
tics computation. This is due to the simplicity of the £*°
norm sparseness measure and the most efficient estimation
concept used in the algorithm design.
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