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ABSTRACT

We introduce a new extended model for independent component
analysis (ICA) and/or blind source separation (BSS), in which the
assumption of the standard ICA model that the source signals are
mutually independent (or spatio-temporally uncorrelated) is re-
laxed. In the new model, the source is presumed to be the sum of
some independent and/or dependent subcomponents. We show a
practical solution for this class of blind separation problems by us-
ing the subband decomposition (SD) and the independence test by
analyzing global mixing-demixing matrices obtained for various
subbands or multi-bands. This is very simple but efficient tech-
nique, and users just apply the proposed method to conventional
ICA/BSS algorithms as pre- and post-processing. The method
proposed in the paper has been tested for blind separation prob-
lems with partially dependent sources. The results indicate that the
method is promising for the signal separation problem of speech,
image, EEG data and so on.

1. INTRODUCTION

Independent component analysis (ICA) has extensively been stud-
ied for solving blind signal separation problems and several effi-
cient algorithms have been proposed (see for overview, e.g., [1,2]).
To apply ICA method for separation, generally source signals to be
estimated must satisfy the strong assumption that source signals
are mutually independent and non-Gaussian except one source.
However, the assumption of statistical independence is very strong
restriction. In fact, there are a lot of real world problems in which
the independence of sources cannot be assumed. For example, the
same tones generated by different instruments may have correla-
tion, that is, they are generally dependent. Consider the estima-
tion of brain source signals from observed electroencephalograph
(EEG) data. In general, brain source signals are not completely
independent. It is difficult to estimate them as long as we apply
conventional ICA algorithms. How we can solve this problem and
how to find whether we have extracted true sources or not (e.g.
brain signals, voices, instrumental sounds and so on) are main ob-
jective of this paper.

We firstly propose a relaxed linear mixing model in which it
is assumed that each source is the sum of several narrow-band
sub-components, and at least two of them are mutually indepen-
dent. Then, we show a solution for this problem using a sur-
prisingly simple method consisting of linear signal decomposi-
tion for the mixtures and applying blind performance criterion for
the estimated separation matrices. In this method, we apply the
so-called subband decomposition (SD) for extracting independent
sub-components or subbands to the observed mixtures. Then, we

apply existing ICA algorithms [3–5] to several sub-components,
which yields a set of the corresponding estimated separation ma-
trices. In order to find independent subbands only from the sepa-
ration matrices, we propose new performance criteria to blindly
identify independent subbands. Finally, we show experimental
results and compare the proposed method with the conventional
ICA/BSS to claim our proposed methods to be effective in blind
source separation.

2. PROPOSED MIXING MODEL AND SUBBAND
DECOMPOSITION ICA

In this section, we propose the model of mixture in which the as-
sumption of mutual independence of original signals is consider-
ably relaxed. We propose the use of subband decomposition (SD)
as a pre-processing in order to decompose the observed data into
several subbands.

In the ICA problem, it is assumed that the sources si(t) are
mutually independent and non-Gaussian. We will relax this as-
sumption of independence as follows. We assume that all sources
si(t) are not necessarily independent, but can be represented as the
sum of several sub-components as

si(t) = si,1(t) + si,2(t) + · · · + si,L(t), (1)

where si,k, k = 1, . . . , L, are narrow-band sub-components. We
further assume that at least two of such sub-components are statis-
tically independent. In more general scenario, we must find at least
two groups of sub-component which are mutually independent.

We now consider the observed signals xi(t) which are linearly
mixed by an unknown matrix A ∈ Rn×n as

x(t) = As(t), (2)

where s(t) = [s1(t), . . . , sn(t)]T and x(t) = [x1(t), . . . , xn(t)]T . The
ICA problem is to find a separation (demixing) matrix W which
gives the independent components (ICs) y(t) =Wx(t).

Most ICA/BSS algorithms require the assumption of the inde-
pendence/uncorrelatedness of the source signals. Therefore, un-
der our relaxed assumption, those algorithms cannot be applied
directly to the separation problem. Some pre-processing of the ob-
served data is necessary. However, if we have the linear operator
(or linear time-invariant filter) Tk which exactly extract at least one
sub-component in (1) given as

sk(t) = Tk[s(t)], (3)

where sk(t) = [s1,k(t), . . . , sn,k(t)]T , then by applying the operator
Tk to the mixing model (2), we have

xk(t) = Tk[x(t)] = Tk[As(t)] = ATk[s(t)] = Ask(t). (4)
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Fig. 1. Subband decomposition: A filter bank structure (top),
and the associated subbands (bottom). The subbands can be over-
lapped or not and have more complex multi-subband forms.

This means that if we apply an ICA/BSS algorithm to xk(t), we
can obtain the separation matrix Wk with respect to A. Now, the
question is how we find proper operators or filters T . Of course,
such filters depends on input data.

Actually, it is generally difficult to find the most appropriate
filter T without information about sources. We instead introduce
here a method which utilizes the SD. Figure 1 illustrates the basic
structure of the SD. The transform consists of a set of bandpass
filters whose transfer functions are H1(z), . . . ,HL(z) with the as-
sociated impulse responses h1, . . . , hL, respectively. Note that we
only focus here on real-valued signals; therefore, the maximum ra-
dian frequency ωmax shown in Fig. 1 is less than or equal to the
Nyquist π. It depends on the energy distribution in the frequency
domain of signals x(t) to be analyzed. After subband filtering, we
have the L subband components given as

xi,l(t) = (xi ∗ hl)(t), l = 1, . . . , L; i = 1, . . . , n, (5)

where ∗ denotes the convolution. If we introduce a linear operator
Tl with respect to hl, the above equation can be written as

xl(t) = Tl[x(t)]. (6)

In our method, we estimate the true mixing and separating matri-
ces using the decomposed subband observed signals instead of the
original raw observed (mixed) data. After successful estimation
of the true mixing matrix, we project the global raw data via the
estimated separating matrix to reconstruct the original (dependent)
sources. We now have another question: How can we find inde-
pendent (or nearly independent) subbands from the subband signal
set {xl(t)}. The difficulty lies in the fact we have to find them in a
blind manner. An approach to this problem will be given in the
following section.

3. NEW PERFORMANCE CRITERIA

3.1. Cross-Global Matrix

The key to solve this problem is a cross-global matrix. In the con-
text of ICA/BSS, the global matrix G is defined as the product of
the mixing and the separating matrices, i.e.,

G =WA. (7)

By applying an ICA/BSS algorithm several times to the observed
signal x(t) and its subband signals xl(t), we obtain the sequence of
separating matrices: W0, W1, ..., WL, where W0 is the separation
matrix estimated from the raw signal x(t) and Wl, l = 1, . . . , L
is that estimated from the subband signal xl(t) by applying some
ICA/BSS algorithm. Using them, we can define the set of cross-
global matrices as

Gi,m =W lW−1
m , l � m, (8)

for l,m = 0, . . . , L, where again W l is the estimating separating
matrix for the l-th frequency subband and W−1l means the inverse
matrix which will be equal to the mixing matrix if the estimation
by ICA is correctly performed, i.e., if the transformed or filtered
source signals are independent.

If the specific sub-components of interest are mutually inde-
pendent, at least for two subbands, say, for the subband ‘l’ and
subband ‘m’, then the cross-global matrix Gl,m is a sparse general-
ized permutation matrix P with a special structure with only one
non-zero (or in non-perfect case, strongly dominated) element in
each row and each column. It follows from the simple mathemat-
ical observation that in such case the both matrices Wl and Wm

represent the inverses of the same true mixing matrix A (ignoring
nonessential and unavoidable arbitrary scaling and permutation of
the columns). In this manner, we can blindly identify essential and
very important information for which sub-components are inde-
pendent.

This concept can be generalized for any linearly transformed
or pre-processed signals, for example, the time-frequency or other
transformed data. For each transformed data, we can easily esti-
mate the mixing and/or separating matrices.

3.2. Blind Performance Index

We describe here a method to find the most independent subband
by evaluating cross-global matrices introduced above. A well-
known criterion for measuring the separation performance is per-
formance index (PI) [1] which is defined as

PI(G) =
1

m(n − 1)

m∑
i=1

n∑
j=1

(
[G]i, j

max j[G]i, j
− 1

)
, (9)

where [G]i, j is the (i, j)-element of the matrix G. The smaller
PI implies usually better performance in separation. It should be
noted that the PI can be used for performance evaluation in exper-
imental settings only, because the knowledge of the mixing matrix
A is required.

In a similar way, we can define the performance index

BPI(Gl,m) = PI(Gl,m), (10)

for the cross-global matrix Gl,m. Since this Gl,m does not exploit
knowledge of A, we call it blind performance index (BPI). If the
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Fig. 2. Source signals used in numerical examples.

Table 1. Performance index comparison of Experiment I: The
frequency range [0, ωmax] is uniformly divided into L subbands
without overlapping by eighth-order Butterworth filters.

Algorithm l1 l2 BPI(Gl1 ,l2 ) BPI(Gl2 ,l1 ) PI(Gl1 ) PI(Gl2 ) PI(G)
SOBI 3 5 0.140 0.111 0.0838 0.111 0.181
SANG 7 9 0.0350 0.0359 0.0240 0.0405 0.0927
Pearson 7 6 0.0317 0.0319 0.0237 0.0322 0.0949

(a) Speech4+sin: L = 10 and ωmax = 0.982π.

Algorithm l1 l2 BPI(Gl1 ,l2 ) BPI(Gl2 ,l1 ) PI(Gl1 ) PI(Gl2 ) PI(G)
SOBI 2 4 0.146 0.185 0.0347 0.159 0.327
SANG 2 5 0.0527 0.0533 0.0185 0.0494 0.380
Pearson 2 5 0.0483 0.0482 0.0184 0.0468 0.403

(b) Speech4+high: L = 8 and ωmax = π.

Algorithm l1 l2 BPI(Gl1 ,l2 ) BPI(Gl2 ,l1 ) PI(Gl1 ) PI(Gl2 ) PI(G)
SOBI 1 7 0.221 0.230 0.141 0.201 0.231
SANG 7 1 0.0697 0.0675 0.0313 0.0458 0.0819
Pearson 7 1 0.0635 0.0617 0.0315 0.0411 0.0762

(c) 10halo: L = 8 and ωmax = 0.652π.

cross-global matrices Gl,m and Gm,l are the generalized permutation
matrices, then the subband sources sl(t) and sm(t) are mutually in-
dependent. This implies that if both BPI(Gl,m) and BPI(Gm,l) are
small enough, the subband sources sl(t) and sm(t) are likely to be
independent. In other words, BPI helps us to judge whether the
separation has succeeded or not.

4. EXPERIMENTAL RESULTS

To show the advantage, the proposed method is compared with a
standard ICA. All experiments are done by using the modified ver-
sion of the ICALAB [6]. The ICA/BSS algorithms applied here are
SOBI (second order blind identification) [3], SANG (self adaptive
natural gradient algorithm with nonholonomic constraints) [4], and
Pearson-opt. (Pearson system optimized) [5].

Due to lack of space, we illustrate the performance of separa-

Table 2. Performance index comparison of Experiment II: We
compare two BPIs and check consistency and validity of two dif-
ferent multi-band preprocessed data.

Algorithm BPI(G1,2) BPI(G2,1) PI(G1) PI(G2)
SOBI 0.0912 0.0860 0.0619 0.0124
SANG 0.0800 0.0639 0.0275 0.0190
Pearson 0.0662 0.0560 0.0236 0.0167

(a) Speech4+sin: L = 10, N1 = 3, and N2 = 6.

Algorithm BPI(G1,2) BPI(G2,1) PI(G1) PI(G2)
SOBI 0.139 0.0925 0.0488 0.0326
SANG 0.0274 0.0276 0.0235 0.0182
Pearson 0.0150 0.0153 0.0244 0.0248

(b) Speech4+high: L = 10, N1 = 3, and N2 = 4

Algorithm BPI(G1,2) BPI(G2,1) PI(G1) PI(G2)
SOBI 0.104 0.105 0.106 0.0412
SANG 0.0159 0.0158 0.0211 0.0152
Pearson 0.0164 0.0163 0.0215 0.0151

(c) 10halo: Two sub-components are generated by the 1st- and
the 2nd-order differentiator.

tion for only three data sets called

1. Speech4+sin: Four speech signals corrupted by sinusoids
of 50 Hz with different phase delays. Specifically, we con-
sider the case where the speech signals are corrupted as fol-
lows:

si(t) = ŝi(t) + sin

[
2π

(
f
fm

t + αi

)]
, i = 1, . . . , 4, (11)

where ŝi(t) is a speech signal 1, f = 50 Hz, fm is a sampling
frequency, and αi is a phase delay such that 0 ≤ αi < 1
(we set in this test that αi = (i − 1)/5). This example is
somewhat artificial; however, many real world signals can

1Readers can obtain the speech signals ŝi(t) called the benchmark
Speech4 in the ICALAB [6].
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be affected by the power supply, which yields a sinusoidal
interference.

2. Speech4+high: Four speech signals corrupted by the same
additive high frequency noise. This source signal can be
written as si(t) = ŝi(t)+ ξ(t), where ξ(n) is a high frequency
signal which is generated as a Gaussian noise. In other
words, ξ(n) is a time series of autoregressive model with
a highpass filter.

3. 10halo: Speech signals in which ten different people say
the same sentence simultaneously. All signals may not be
mutually independent.

The signals of those sets are depicted in Fig. 2. The mixing process
is done by randomly generated matrices.

4.1. Experiment I

We examine the following test:

• Apply ICA/BSS for the raw mixture and all single subband
signals, and obtain a set of separation matrices {Wl}Ll=0.

• Compute BPIs for all cross-global matrices BPI(Gl,m), for
l,m = 0, . . . , L.

• Find two subbands l1 and l2 that correspond to the minimal
BPI, i.e., BPI(Gl1 ,l2 ) = min

l,m=0,...,L
BPI(Gl,m).

The performance indexes are listed in Table 1. The frequency
range [0, ωmax] is uniformly divided into L subbands without over-
lapping. It can be observed in comparison that the proposed method
results in consistently superior performance to the standard ICA/BSS
algorithm. It should be noted that in particular, the improvement
in Speech4+high is significantly large.

4.2. Experiment II

The concept of the SD can be extended to the multi-band decom-
position or any frequency transform. We examine here the follow-
ing test:

• For Speech4+sin and Speech4+high:

– Apply the same SD as in Experiment I, check the �p-
norm (we have chosen here p = 1/2) of each com-
ponent xl(t), l = 0, . . . , L, and choose the N1 subband
signals xl( j)(t), j = 1, . . . ,N1 that give the N1 smallest
norms.

– Set x(1)(t) = [xT
l(1)(t), . . . , x

T
l(N1)(t)]

T .

– In the same way, compose x(2)(t) of N2 � N1 subband
signals that have N2 smallest norms.

• For 10halo: Define x(1)(t) and x(2)(t) as filtered signals x(t)
with the first-order and second-order differentiators, respec-
tively.

• Obtain W1 and W2 for x(1)(t) and x(2)(t), respectively.

• Compute BPIs for the cross-global matrices BPI(G1,2) and
BPI(G2,1).

The performance indexes are listed in Table 2 for the same
mixing matrix. If both BPI(G1,2) and BPI(G2,1) produce very
small values, then with high probability, the estimated sources are
true sources. First of all, it should be noted that the use of multi-
ple subband signals improves separation performance significantly

in many cases. For example, by using the multi-band signals for
Speech4+sin, PI of Pearson is improved from 0.403 as shown in
Table 2(b) to 0.0182 as shown in Table 3(b). It follows from Ta-
ble 2 that in general, when BPIs are small, true PIs are also small.
In contrast, as we see for SOBI algorithm Table 3(b), PI of the
sub-component 1 is relatively large, i.e., PI(G1) = 0.106, and the
corresponding two BPIs are also large. This fact shows the con-
sistency of our results. This implies that we can blindly know that
the sub-components 1 and/or 2 are not independent.

5. CONCLUSIONS AND FUTURE WORK

We have introduced a novel model for ICA/BSS, in which the
source is presumed to be the superposition of independent and
dependent sub-components. We have shown a method for the
separating problem by using the SD and the independence test
with the cross-global matrix. Our extensive experiments have con-
firmed that the use of the proposed procedure can often produce
better performance in separation than the conventional single use
of ICA/BSS algorithm. Moreover, the blind test based on BPIs
tells us which sub-components are likely to be independent. There-
fore, the method proposed in this paper is promising to the more
general signal separation problems, especially for EEG data pro-
cessing.

In similar way we can check consistency of the various ICA al-
gorithms Let assume that two different algorithms, say, algorithm
“p” and algorithm “q” generate two different separating matrix Wp

and Wq If the results of multiplication W pW−1
q is the permutation

matrix or close to permutation matrix this means the both algo-
rithms give the same consistent results. This can be useful if the
number of components is large and checking the consistency by
comparing and visualize them manually is very time consuming
and not exact. There are several applications based on this strategy
in biomedical signal processing. These problems will be addressed
in the near future.
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