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ABSTRACT

The problem of underdetermined blind source separation

is addressed. The sparse assumption which is commonly

required in the current underdetermined blind source sep-

aration literature is relaxed. By introducing an advanced

clustering technique based upon self-splitting competitive

learning, the time-frequency plane is partitioned into ap-

propriate blocks where the number of active sources is no

more than the number of sensors, resulting in a novel robust

block based algorithm. Simulation studies are presented to

support the proposed approach for the separation of GMSK

sources.

1. INTRODUCTION

Given a set of m antennae measurements, the aim of blind

source separation (BSS) is to extract the underlying k un-

known sources when the transmission channels between

the sources and the antennae are also unknown. In data

modelling, the antenna measurements are often represented

as linear instantaneous mixtures of input sources. De-

note s (t) = [s1 (t) s2 (t) . . . sk (t)]
T
as the source vector,

where (·)T is the transpose operator. The measurement sig-

nal x (t) = [x1 (t) x2 (t) . . . xm (t)]
T
at discrete time t is

written as

x (t) = As (t) + n(t) (1)

where A = [a1 . . .ak] is an m × k mixing matrix, ai is

the steering vector of source-i and n (t) is the zero mean
additive noise vector.

Two assumptions are conventionally required in BSS.

One is the statistical mutual independence assumption of

the sources, which underlies the field of independent com-

ponent analysis. As independence is lost after linear mixing,

an unmixing matrixB of dimension k×m is introduced. Its

output y (t) = Bx (t) is the estimator of the input sources
subject to possible scaling and permutational ambiguities.

The second assumption in BSS requires that the mixing ma-

trix A is full column rank. In other words, the number of

measurement antennaem should be at least as many as the

number of input sources k. When this assumption is vio-

lated (i.e., m < k), the problem becomes ill-conditioned

and is termed underdetermined BSS (UBSS) in this paper.

So far, most of the UBSS algorithms exploit various kinds

of sparsity of the input sources either in the time domain or

in the joint time-frequency (t-f) domain. In [3], the FO-

CUSS algorithm is proposed. It is subsequently suggested

for use in UBSS. However a unique solution is guaranteed

only if there is a single source present in the system at every

time instance. On the basis that the source distribution is

assumed sparse, another algorithm which jointly estimates

the mixing matrix and the sources is proposed in [1]. Al-

ternatively, by noticing that the received signals will be co-

linear with the corresponding steering vector if only a sin-

gle source is present at a given time instant, an approach

is proposed in [5]. Recently, the techniques of t-f analy-

sis have been suggested in the BSS literature, as they are

able to reveal the information embedded within the non-

stationary signals and are advantageous in the environment

of low signal to noise ratio. For the application in UBSS,

by assuming that the t-f representation of input sources do

not overlap, a method for separating an arbitrary number

of sources from two mixtures is proposed in [4]. Also un-

der this t-f orthogonality assumption, the algorithm in [6]

separates different sources by clustering the t-f points that

are associated with the same steering vectors. However, as

the sparse assumption of the input sources may not hold

in many practical applications, we are motivated to inves-

tigate the situation where the t-f orthogonality assumption

is relaxed. By introducing a classification technique called

self-splitting competitive learning (SSCL) [7] to divide the

t-f plane into appropriate blocks, a new block-based t-f al-

gorithm is proposed for UBSS.

2. BLOCK BASED TIME-FREQUENCY

UNDERDETERMINED BSS ALGORITHM

To exploit the information present within non-stationary

sources in the t-f domain, a quadratic t-f representation is

employed. Denote φ (v, l) as the signal-independent kernel
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function. The discrete-time form of Cohen’s class of t-f rep-

resentation for antennae signal xi (t), which corresponds to
the auto term in the quadratic t-f representation, is given by

Dxixi
(t, f) =

�X
l=��

�X
v=��

φii (v, l)× (2)

xi (t+ v � l)x�i (t+ v + l) e�j4πfl

The cross t-f representation of two signals xi (t) and xj (t)
is written as

Dxixj
(t, f) =

�X
l=��

�X
v=��

φij (v, l)× (3)

xi (t+ v � l)x�j (t+ v + l) e�j4πfl

The extension of the t-f representation to accommodate vec-

tor signals leads to

Dxx (t, f) =
�X

l=��

�X
v=��

� (v, l)× (4)

x (t+ v � l)xH (t+ v + l) e�j4πfl

where � (v, l) is a matrix whose (i, j)th entry φij (v, l) is

the kernel associated with the ith and the jth measurement

sensor output. Note that Dxx (t, f) is related to that of the
input sources by the following key equation

Dxx (t, f) = ADss (t, f)A
H (5)

In [6], under the t-f orthogonality assumption, Dxx (t, f)
is a rank-1 matrix at every t-f point (ti, fi). Signal separa-
tion therefore becomes possible by clustering the t-f points

associated with same steering vector, which can readily be

estimated with the principle eigenvector ofDxx (t, f).
For better practicality, in this work, we relax the t-f or-

thogonal assumption such that

Assumption 1. At any time instant, the number of active

sources d does not exceed the number of antenna, i.e., 0 �
d � m.

Notice that, with the relaxation of the orthogonality as-

sumption, eqn. (5) is no longer a rank-1 matrix. As there is

no clear relationship between the eigenvectors ofDxx (t, f)
and the steering vectors, using singular value decomposition

(SVD) on Dxx (t, f), the only information obtained is the
number of active sources at that specific point. But which

d out of k sources are active is difficult to establish. How-

ever, in many applications, it is reasonable to assume that a

signal is likely to exist in the system for a certain minimum

length of time once detected. In other words, we assume

certain temporal continuity of the input sources. This can be

justified for example in communications application, where

the sources are non-stationary in the sense of their sudden

arrival or departure. Thus in a short time interval, a fixed

number of sources is present in the system and this number

does not exceed the number of the antennaem. Based upon

this property, the basic idea of our approach is to clustering

the neighbouring t-f points that correspond to the same ac-

tive sources. As a result, the whole t-f plane is partitioned

into a certain unknown number of blocks. In each block,

at most m sources exist and the adjacent blocks contain

different numbers of sources. The important point here is

that, within the same block, the active sources remain un-

changed. Signal processing can therefore be carried out in

a block-by-block manner. Moreover, since there are at most

m sources present in each block, the problem of UBSS is

transformed into exactly or over determined blind source

separation, both of which have neat solutions.

In the implementation, one of the major difficulties is

in the way that the t-f plane is partitioned. Let a three

source and two antenna system be an example. With

an SVD applied to every t-f point (ti, fi), we obtain set
�1 = {(ti, fi) | single active source present}and �2 =
{(ti, fi) | two active sources present}. It is however diffi-
cult to partition �1 and �2 into appropriate blocks, each of

which is contributed by the same active sources. For ex-

ample, a subset of �2 may be contributed by source-1 and

source-2 while another subset of �2 may be contributed

by source-2 and source-3. As it is nearly impossible to

know the number of such subsets a priori, when group-

ing the neighbouring t-f points using classification meth-

ods, an advanced clustering technique which does not re-

quire the knowledge of the number of clusters is needed.

To tackle this problem, a recently proposed clustering tech-

nique called self-splitting competitive learning is introduced

in our approach, which we briefly explain in the following

subsection.

2.1. Self-Splitting Competitive Learning in UBSS

The most noticeable advantage of the SSCL algorithm is its

capability in automatically determining the number of clus-

ters. The algorithm is proposed from the view of competi-

tive learning in neural networks, in which several prototypes

or neuronspi are competing to ‘win’ as every member in the

data set Z is included in the examination. For our applica-

tion of UBSS, the data set is the collection of t-f points, i.e.,

�i, i = � . . .m. In the ideal situation, each cluster is associ-
ated with a prototype at its center. In this sense, the problem

of estimating the right number of clusters is effectively the

determination of the number of prototypes. The algorithm

starts from a single prototype and splits it into more when a

certain condition is met. The disadvantage of the conven-

tional competitive learning methods is recognized by the

author. That is, one prototype might represent more than

one cluster if the number of prototypes is less than the nat-

ural number of clusters and, as a result, none of the clus-
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ters could be correctly identified. To avoid this problem,

an asymptotic property vector fi is suggested to guide the

learning of each prototype pi. By discriminating the data

in Z, each prototype is able to represent only one cluster.

Specifically, only the data points inside the neighborhood

of pi will contribute to the learning of pi and the neighbor-

hood is determined with the help of the asymptotic property

vector fi. Suppose at some moment during the learning of

pi, the member selected from Z is ea. The update equation
of pi is given by

pnew
i = pi + αi (ea� pi) (6)

where αi is some scalar whose value is related to pi, fi andea. For enough members in Z to be included in the learning
of pi, the asymptotic property vector fi should be initialized

far away from pi. During the learning, fi is also updated

such that it approaches pi

fnewi = fi +
�

nfi
δi (ea� fi)�(pi, fi,ea) (7)

where δi =
³

kpi�fik2
kpi�eak2+kpi�fik2

´2
, � (pi, fi,ea) is a func-

tion which gives unity when kpi � fik2 � kpi � eak2 and
zero otherwise. The quantity nfi is the winning counter of

fi, whose value is updated by n
new
fi

= nfi + δi�(pi, fi,ea).
Upon convergence of pi, the distance between pi and fi
is smaller than a certain threshold value, which implies no

more members within the data set are eligible for the learn-

ing of pi.

To determine when the SSCL algorithm should split one

of its prototypes, a center property vector gi is employed

for each cluster, which is updated as the exact arithmetic

mean of the input data points for which a prototype pi

has so far been the winner. If kpi � gik2 is larger than
a certain threshold, it suggests that an extra cluster ex-

ists which is trying to pull the cluster center from pi to

gi. For non-Gaussian distributed clusters, if eaj is of di-
mension m, a simple way to determine the threshold is
1

50
(max (Sl1, Sl2 . . . Slm)), where Sli is the scale of the

ith coordinate in the m dimension feature space. Once the

algorithm decides there should be another new cluster, the

current prototype is split into two. One stays at its current

location, the other is initialized at some distant location. For

more efficiency in the implementation, a distant property

vector ri is used and updated as the learning of pi contin-

ues. But, in contrast to the asymptotic property vector fi,

the distant property vector ri will be updated to a distant

location from pi.The algorithm continues until no further

cluster is suggested by the splitting criterion. The SSCL al-

gorithm has the advantage of computational simplicity and

it is suitable for use in a large data set, which makes it suit-

able for use in the algorithm.

2.2. Reconstruction of the Transmitted Sources

After dividing the t-f plane into blocks, the conventional

BSS algorithm (here the JADE algorithm [2]) is applied.

The active sources in every time interval are estimated to-

gether with the associated steering vectors. But due to the

inherent permutational ambiguity of BSS algorithms, the

problem of lining up the blocks that correspond to the same

source is raised. To tackle this problem, notice from eqn.

(1) that each source si(t) is associated with a steering vec-
tor ai that is kept unchanged for the whole observation pe-

riod. Hence by classifying the set of estimated steering vec-

tors using for example conventional k-means algorithms,

the permutational problem is solved. In summary, a feasible

procedure is outlined as followed.

Algorithm for the violation of the t-f orthogonality as-

sumption

Step 1. For computational simplicity, only (ti, fi) that have
sufficient energy are considered. That is, keep (ti, fi) iff
kDxx (t, f)kF > ε, where ε is certain threshold and k·kF
denotes the Frobenius norm. For those selected (ti, fi), de-
termine the number of active sources d with SVD.

Step 2. For�i, i = � . . .m, i.e., the regions having the same
number of active sources, use SSCL to group neighbouring

t-f points into blocks.

Step 3. Apply the JADE algorithm to every block that is

associated with more than one active sources, i.e., �i, i =
2 . . .m.
Step 4. For the blocks that correspond to the presence of

a single source, i.e., �1, the steering vectors are estimated

as the cluster centers. Apply the FOCUSS algorithm to re-

trieve the transmitted signal.

Step 5. To line up all the t-f blocks that are corresponding

to the same source, all the estimated steering vectors are

classified with, for example, the k-means algorithm.

Step 6. Once the permutation becomes known, sum up

the estimated signal in different time blocks that are cor-

responding to the same source.

It should be stressed that besides removing the t-f orthog-

onality assumption, another advantage of the new approach

is that the signals in each t-f block are actually separated in

the time-domain. The synthesis stage of signals from their

quadratic t-f distribution in [6], which in fact is far from

straightforward, is no longer required.

3. SIMULATION

We assume a k = 3 sources and m = 2 antenna system.
The input sources are selected as Gaussian minimum shift

keying (GMSK) sources. The two measurement antennae

are separated by half of the wavelength. The directions of

arrival of the three sources are assumed to be respectively 0,
1

9
π and 2

3
π. Additive white Gaussian noise of 20dB signal
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Source No. Active time in the system

Source-1 0-4000 sec, 5001-7000 sec, 8001-10000 sec

Source-2 2001-5500 sec

Source-3 7101-10000 sec

Table 1. Description of three Non-Stationary Source Sig-

nals
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Fig. 1. Source signals, antenna measurement signals and

the identified non-overlap and overlap regions (a) Source-1

(b) Source-2 (c) Source-3 (d) Antenna-1 (e) Antenna-2 (f)

Region of a single active source (g) Region of two active

sources

to noise ratio is present at the antenna measurements. The

data rate is 1000bits/sec and the sampling rate is 10ksam-

ples/sec. The three sources use the same carrier frequency

of 3000Hz. The active times of different source signals are

summarized in Table 1. It can be observed that at the time

intervals 2001sec - 4000sec, 5001sec - 5500sec and 8000sec

-10000sec, two active sources are simultaneously present in

the system, which violates the conventional t-f orthogonal-

ity assumption. The t-f representations of the sources are

shown in Fig 1(a)-(c) and the antennae measurements are

described in 1(d)-(e). With SVD, the proposed algorithm

correctly identifies the overlap and non-overlap region, as

shown in 1(f)-(g). Using the SSCL method to partition

the overlap and non-overlap regions into appropriate blocks,

the three GMSK sources are successfully retrieved, as con-

firmed by their t-f representation shown in Fig 2.

4. CONCLUSION

We have addressed the problem of underdetermined blind

source separation by using t-f analysis. The limitation of the

sparsity assumption of the input source in the conventional

approach has been highlighted and considerably relaxed.

The advanced clustering technique of self-splitting com-

petitive learning was introduced in partitioning the whole
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Fig. 2. Successful source separation (a) T-f representation

of source-1 (b) T-f representation of source-2 (c) T-f repre-

sentation of source-3

time frequency domain into appropriate blocks and a new

block-based algorithm is therefore proposed and supported

by simulation results.
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