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LOW COMPLEXITY BAYESIAN SINGLE CHANNEL SOURCE SEPARATION
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ABSTRACT

We propose a simple Bayesian model for performing sin-
gle channel speech separation using factorized source pri-
ors in a sliding window linearly transformed domain. Us-
ing a one dimensional mixture of Gaussians to model each
band source leads to fast tractable inference for the source
signals. Simulations with separation of a male and female
speaker using priors trained on the same speakers show com-
parable performance with the blind separation approach of
Jang and Lee [1] with a SNR improvement of 4.9 dB for
both the male and female speaker. Mixing coefficients can
be estimated quite precisely using ML-II, but the estimation
is quite sensitive to the accuracy of the priors as opposed to
the source separation quality for known mixing coefficients
which is quite insensitive to the accuracy of the priors. Fi-
nally, we discuss how to improve our approach while keep-
ing the complexity low using machine learning and CASA
approaches [1, 2, 3, 4].

1. INTRODUCTION

Blind source separation is an active research subject within
contemporary signal processing and machine learning. The
blind separation of linearly mixed sources is possible be-
cause prior knowledge about the source signals is used. When
the problem is well-determined, i.e. the number of sensors
(channels) is at least as high as the number of sources, the
source prior usually only needs to be quite weakly defined,
e.g. in terms of their kurtosis, i.e. as sub-/super-Gaussian.
The task of separating a mixture of sources in only one
channel, on the other hand, requires strong prior knowledge.
Together with the problem of separation of convolutive mix-
tures, this is the most interesting case seen from a hearing
instrument industry point of view.

Successful single channel speech separation are based
upon building into the model strong prior knowledge. In
the computational auditory scene analysis (CASA) this is
achieved by hand crafting into the system knowledge about
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high level features of the speech signal such as pitch/periodi-
city and continuity [3, 4]. Machine learning methods can
also be used to extract such features by training e.g. hidden
Markov models (HMM) on speech periodograms for single
speakers [2]. These HMM work as priors for the sources
in the single channel mixed signal. Independent component
analysis can be used to extract basis filters and priors in a
sliding window based approach [1]. The basis filters and
associated independent source priors in the transformed do-
main exploits the underlying probabilistic characteristics of
the speech signals. Our approach is familiar in spirit with
Ref. [1]. We make the simplifying assumption that both
speakers share basis filters which for simplicity here is cho-
sen to be discrete cosine transforms (DCT). Using a mix-
ture of Gaussians prior, we furthermore keep all inference
tractable such that we can use a Bayesian estimator for the
sources as opposed to the maximum likelihood (ML) ap-
proach used in Ref. [1]. These simplifying assumptions has
been used because it has been the motivation for the work
presented in this paper to keep the analysis simple and com-
putational complexity as low as possible while achieving
separation comparable to e.g. Ref. [1].

2. SOURCE SEPARATION MODEL

The single channel two sources separation problem can be
expressed in the following way: The mixture 2¢ is assumed
to be an instantaneous linear broad band mixture of two in-
dependent sources s and s

xtz)\lst1+)\gs§—l—nt, (1)

where the sources have been weighted with time invariant
mixing coefficients A\; and A2 and noise has been added to
the mixture. Independence of the sources can be expressed
simply as a factorization of the joint distribution of the sig-
nals: p({s1},{s5}) = p({s1})p({s5})-

The basic idea of the approach examined in this paper
is to build a probabilistic model for sources in some lin-
ear transformed domain and perform the separation of the
sources in each band assuming complete independence over
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time and bands. In this way we achieve simple analytically
tractable inference while we by using block based process-
ing exploit temporal correlation inherent in speech signals.
Mathematically, the transformed domain variables can be
expressed as

x(t) = (&'(),...

where x(t) = (2f, 2!, ..., 2TV =INT is the tth sample
window vector and the band index runs from 1 to the block-
size N. We will also assume that the inverse F'~! exists.
In the next section we will discuss the specific choice of F’
in this work and in the literature. Due to the linearity of
the transform, eq. (1) turns into an identical eq. in the trans-
formed domain: X(¢) = A\181(¢) + A282(t) +7)(¢). The cru-
cial assumption for making a low complexity algorithm is
that the joint distribution of the transformed variables over
time and bands factorizes, i.e. p({8,,(t)}) = [1,, p(5%,(¢))
with source index m = 1, 2. Ideally the transform will be
chosen such that each band represent independent features.
Clearly, the bands are very correlated for nearby times since
there will be a big overlap of the windows used to calculate
the transformed sources. The block based representation in-
troduces redundancy in the estimation, i.e. once we have ob-
tained estimates of the sources §5(¢), we get IV estimates
of each source signal s%, from the inverse transformations
F1sst(#)],t =t — (N —1),...,t. An empirical inves-
tigation shows that these N estimates are rather consistent,
i.e. their standard deviation is somewhat smaller than typi-
cal deviation from the true source value. This justifies using
the mean over the NV estimates as the final estimator.

Next, we will go through the Bayesian estimation theory
for the source signals. Since we have assumed complete
independence we can omit all time and band indices and
write the posterior distribution of the specific source as

2N ()" = Fx(t)], )

p(Z|51, 82, A1, A2)p(81)p(52)
p(Z[A1, A2)

p(§17§2|:ﬁ7A17A2) = ) (3)

where the normalizing factor
p(&|A1, Xo) = /déldégp(i\él,éz,Al,Az)p(él)p(éz)

is the likelihood for the s for that specific sample. The like-
lihood p(#|81, 82, A1, A2) expresses our observation model,
i.e. for Gaussian noise we have log p(#|31, §2, A1, A2)
— 2}7 (# — A\181 — \a82)?, where 62 is the noise variance.
In section 4 we will discuss how to choose and tune the
prior distribution for the speakers we want to separate. Al-
though we need very precise prior knowledge tuned to the
specific speaker to perform source separation in this under-
determined case, we can still estimate the mixing coeffi-
cients blindly. This will be done by maximum likelihood
II. Since we have assumed independence, the likelihood is

a product over bands and time and we get

Am = argmax Z log p(&; ()| A1, A2) )

A

Finally, we will use the posterior mean (Bayes optimal for
square loss) as the estimator for the sources: 8¢5 = (5,,,) =
f §m p(§m|:i‘, )\1, )\2) dém

3. TRANSFORMED DOMAIN

An important question is what transform to use. Obviously,
the ideal choice is one which make sources in the different
bands statistically independent. Because then at least our
assumption of independence over bands at one time instant
is correct. Here we have chosen the Discrete Cosine Trans-
form (DCT) due to the following properties of the DCT:
its unitary, its real and its robust to noise on the transform
coefficients. The DCT is unitary meaning that there is no
information lost in going from the time domain to the trans-
form domain and it means that the transform is orthogonal
and hence have a decorrelating effect on the transform co-
efficients. The DCT is real which besides making it rela-
tively fast to compute also alleviates problems that would
otherwise occur if we had chosen to use the DFT (or other
complex transform) such as time aliasing, reuse of 'noisy’
phases, increased sensitivity to noise on the coefficients and
complications in the probabilistic description. The disad-
vantage of the DCT is that the sources in the transformed
domain are not independent which is easy to see if other
statistics than the first and second order are calculated. Jang
and Lee [1] use a set of basis filters A,,,, m = 1,2 and
associated priors that are learned from data such that the
sources $,, are independent. Their generative model is thus
st = A8, () and x* = A\is!i+)\osh. Multiplying x* with
ATl we get X(t) = AT xE = M81(t) + Ao AT Asda(t).
Now if either A; = Ay by construction or there exists
a suitable permutation matrix P, P2 = I, such that that
Al_lAzP is nearly diagonal then we can use the framework
developed above directly on §;(¢) and P$3(t) with mixing
coefficients \; and )\gdiag(AflAgP). This will be tested
in a future publication.

4. ESTIMATING THE PRIOR

DCT coefficients were extracted from a male and a female
speech signal obtained from Ref. [1] and the resulting his-
tograms plotted as illustrated in figure 1. As can be seen
in this example the distribution is sharply peaked around
zero and show long-tailed tendencies and this applies for all
bands. We therefore choose to model the distribution with a
zero mean mixture of Gaussians (MoG)

p(3) = > mN;(0,07) (5)
k
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where the mixing proportions 7, are normalized to 1: ), 7, =

1 and NV (1, 02) is the 1D Gaussian distribution for z with
mean p and variance 02. Maximum Likelihood estimation
of the parameters can be done with the EM algorithm. We
also fitted a Laplacian prior p(3) = § exp(—«/3]). The re-
sults of the fit can also be seen in the figure 1. All the MoG
models make pretty good fits. However, the Laplacian, even
though suggested as a good speech model [5], is too unflex-
ible for both fitting the peak and the tails.

x107° Comparison of distributions and fit to speech DCT coefficient
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Fig. 1. Fit of priors to observed data for 10th band male
speaker.

5. BAYESIAN INFERENCE IN MIXTURE OF
GAUSSIANS

Using an additive Gaussian noise observation model and the
MoG priors we can derive analytically tractable expressions
for the likelihood and the posterior mean estimator:

Ki1,K>

Z 7Tk1 7Tk2Ni (07 0’]%1]62)

k1,k2

p(2[A1, Ae) =

Ki,K>

E km, 2
/\ 7Tk17Tk2 Nj(0,0’kle)
2

k1,k2 Thaka

<§m> =

:v\/\l,

where we for simplicity have set the noise variance to zero
omitted band and time indices and defined 0, = Moj +
A3o7. . It is interesting to note that the estimator reduces to
the Wiener filter for K1 = K5 = 1 widely used in classical
signal processing methods and speech enhancement.

6. RESULTS AND EVALUATION

In estimating the mixing coefficients it was found that the
fit of the prior distribution to the actual (true) distribution is
crucial. For the case of using Laplacian priors and speech
signals the estimated mixing coefficients were so much off
that the Laplacian prior was found useless. When using syn-
thetic generated Laplacian distributed signals, mixing coef-
ficients could be determined very accurately, but for speech
signals it was impossible to get any accuracy at all. For
the MoG prior, the accuracy of the estimated mixing coef-
ficients when increasing the number of components in the
mixture is improved and this further supported our point
that the fit of the prior is important in estimating the mix-
ing coefficients. For the case of mixing two speech signals
(each 1 second long sampled @ 16kHz) with mixing coef-
ficients A; = 0.3 and Ao = 0.7 the estimated mixing co-
efficients for 2 to 5 components MOG priors were A/ =
(0.186,0.249,0.258,0.263) and A} = (0.788,0.727,
0.715,0.709).

An experiment was conducted where separation was per-
formed on male and female speech segments (2 seconds
long with A; = A9 = 1) obtained from Ref. [1]. This test
showed that given a high enough DCT resolution (N=256)
and perfect knowledge about the MoG parameters (4 com-
ponents were used) a signal-to-noise ratio improvement of
4.9 dB for both the male and female speech were obtained.
The SNR improvement is computed as difference in SNR
after separation and before separation (in bands), where the
noise in the separated signals is estimated as the original
speech minus the estimated speech. The SNR improvement
over bands can be seen in figure 2.

In Ref. [1] better separation at the expense of severe ar-
tifacts is obtained whereas our approach obtains less separa-
tion but has virtually no audible artifacts. The resulting SNR
improvements are the equal. All relevant sound samples in-
clude for comparison those from Ref. [1] are available at
isp.imm.dtu.dk/staff/winther/.

The attenuation of the secondary source is getting more
profound the larger the block size used and the more the
prior distributions of the sources differ. The approach nat-
urally works better the more separated the sources are in
frequency. For the sounds used in the evaluation no audi-
ble artifacts or distortion was introduced in the estimated
sources.

7. DISCUSSION AND OUTLOOK

The approach we have taken shows SNR improvement in
separating a single channel mixture of one male and one
female speaker. This improvement is gained in ideal con-
ditions, but also with modest utilization of prior knowledge
in the respect that we make a very fine tuned model of the
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Fig. 2. Spectrograms for original, mixed and separated sig-
nals. SNR improvement as a function of frequency.

statistical properties of single bands in the sliding window
based approach, but use no prior knowledge about the speech
signal and the human auditory system such as pitch/periodi-
city, redundancy, temporal correlation, effects related to psy-
choacoustics, etc. We believe that large improvements can
be obtained if the temporal and spectral correlations in speech
signals are used. The approach we have taken uses tempo-
ral information only implicitly in going to the transformed
domain, but does not exploit spectral correlation at all. The
advantage of our simplistic approach is that since we ignore
all correlations, i.e. model the sources in the transformed
domain as independent, we can make fast exact Bayesian
inference using a mixture of Gaussians (MoG) prior. Fu-
ture extensions should be aimed at utilizing spectral and
temporal information as much as possible and fit it into the
Bayesian framework while keeping the model simple. This
will be discussed below.

Our approach resembles the approach of Jang and Lee
[1]. The differences are that they use a different transform
(actually learned from data), a different family of priors
(called generalized Gaussians) and due to non-tractability
estimate the sources using maximum likelihood and not by
Bayesian inference. The transform and the priors are de-
signed to make the sources statistically independent which
of course is also what we ideally are after. A listening test
and calculation of SNR improvements show that the two
approaches give similar performance. We expect that an
improvement in performance can be obtained by using a
learned transform while retaining the assumption of inde-
pendence to keep the method analytical tractable.

The excellent results of the CASA [3, 4] and Roweis’
CASA inspired machine learning approach [2] show that it

is important to model higher level speech features such as
pitch detection/tracking. The CASA approaches relies on a
0/1-masking of the bands to perform separation. When we
turn our Bayesian estimator into a masking function (by di-
viding the variances of the mixture components by the same
large number) we find a decreased performance. This sug-
gests that masking at least in our approach is not ideal and
that it is worthwhile to combine higher level features with
the Bayesian estimation of the single bands. In the fol-
lowing we will outline a simple low complexity approach
to this, taking the pitch (fundamental frequency) as an ex-
ample of a high level feature. First we extract the fun-
damental frequencies of a signal (marginalizing over the
number of harmonics), i.e. we AgetAthe distribution of the
set of fundamental frequencies f1, fo, ... in the given win-
dowed signal x: p(fi, f2,...|x). If we can assign a fun-
damental frequency to each speaker, f%,, m = 1,2, we can
build source priors that are conditioned on the fundamen-
tal frequency, i.e. p(5°(t)|f¢,) that can be used directly in
the framework presented in the paper. To infer ff , we can
use the above mentioned extraction method on the unmixed
signals to build a (Markov) model for each speaker: p(f?,)
and p(fL,|f1). We can now infer £, m = 1,2 from the
extracted frequencies (assumiqg two e>5tracted frequencies):
UL A £ A S D) ocp(f, 2 D) T, (il !
and the likelihood with equal assignment prob. becomes
p(fr, 2l }) = 3D +p(F F)p(FH £1)-
We expect that enhanced performance can be achieved by
extracting a statistically decorrelating set of basis filters [1]
in combination with simple models of high level speech fea-
tures. We are currently pursuing this with the aim of build-
ing low complexity single channel source separation with
state-of-the-art performance.
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