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ABSTRACT

A number of complex nonlinear functions are proposed for the
independent component analysis (ICA) of complex-valued data.
We discuss the properties of these nonlinearities and show their
efficiency in generating the higher order statistics needed for ICA.

1. INTRODUCTION

Independent component analysis (ICA) for separating complex-
valued sources is needed for convolutive source-separation in the
frequency domain, or for performing source separation on complex-
valued data, such as magnetic resonance imaging or radar data. For
certain approaches to ICA, for example when using explicit tensor
eigenvalue decomposition as in the ICA by joint approximate di-
agonalization of eigenmatrices (JADE) [6], the extension to the
complex case is straightforward. However, in approaches that use
nonlinear functions to implicitly generate the higher order statis-
tics, such as InfoMax [3], this is not the case. These approaches
provide simple and efficient solutions to the problem of ICA and
thus it is desirable to extend them to process complex-valued data.

The main challenge for processing complex data with nonlin-
earities has been the conflict of boundedness and analyticity in the
complex domain, as stated by Liouville’s theorem. To overcome
this challenge, there have been two major trends. The first one
has been to define a complex ‘split’ nonlinear function such that
the real and imaginary parts (or the magnitude and phase) of the
argument are processed separately through real-valued nonlinear
functions [11, 12]. Hence, boundedness is satisfied, but of course,
at the expense of analyticity. The second approach processes the
magnitude of the argument by a real-valued function [2, 4]. We
argue, in this paper, that these approaches, while yielding satis-
factory performance for a class of problems, are not effective in
generating the higher order statistics required to establish indepen-
dence when compared to complex nonlinear functions, i.e., func-
tions that are C → C. We propose a number of elementary tran-
scendental functions (ETFs) for ICA of complex-valued data and
show that they are highly effective in extracting higher order sta-
tistical information. These functions are derivable from the entire
exponential function ez and hence are analytic. Also, with the use
of complex nonlinear functions, a number of common simplifying
assumptions, such as symmetricity of source distributions [2, 4] or
uncorrelatedness of the real and imaginary parts of the sources [4]
can be relaxed.

In [5], we derive a fully-complex counterpart of the Infomax
algorithm by using a complex hyperbolic tangent function as the
nonlinearity and note improved performance of the approach with
respect to its split counterpart. While the argument in terms of gen-
erating higher order statistics to maximize the output of the entropy
can be made for the fully-complex Infomax, the direct connection
to maximum likelihood is no longer possible since the nonlinearity
is complex-valued and hence cannot be directly associated with a
source distribution. In this paper, we start directly with the update
equation of Infomax that uses natural gradient, and by following
the approach of [8], show the effectiveness of a class of complex
nonlinearities in generating the higher order statistics required to
achieve independence. Some of these nonlinearities, we note, are

very robust, a somewhat surprising fact given their unbounded na-
ture. We discuss the properties of these functions and give exam-
ples of their performance.

2. ICA BY COMPLEX NONLINEARITIES

2.1. Complex Preliminaries

A complex random variable X is defined as a random variable
X = Xre + jXim where the real and imaginary parts, Xre and
Xim are real-valued random variables. In our discussion, all real-
valued variables and functions are underlined to distinguish them
from complex variables and functions. The statistical properties of
X are determined by the joint probability density function (pdf)
fX(x) ≡ fXreXim

(xre, xim), provided that it exists. The expec-
tations are thus defined as

E{g(X)} =

∫ ∞

−∞

∫ ∞

−∞
g(xre + jxim)fX(x)dxredxim

for any measurable function g : C → C. The ETFs we consider in
this paper are all complex measurable functions similar to the case
discussed in [9], i.e., for these functions, the measure over the set
of their singularities is zero in the complex vector field.

By a similar argument, we can extend the necessary and suf-
ficient condition for the independence of two random variables to
complex variables, i.e., require that for two complex random vari-
ables X and Y ,

E{g(X)h(Y )} = E{g(X)}E{h(Y )} (1)

is satisfied for all measurable functions g, h : C → C. Hence, two
random variables X and Y are independent if and only if g(X)
and h(Y ) are uncorrelated for all functions g and h with finite
expectations, i.e., when equation (1) holds.

One more point to note for the subsequent discussion is that
the uncorrelatedness of two complex random vectors X and Y re-
quires that both their covariance and ‘pseudo-covariance’ matrices
vanish, i.e., CXY = E{(X − E{X})(Y − E{Y})H} = 0 and
C̃XY = E{(X−E{X})(Y−E{Y})T } = 0, a necessary con-
dition for the four possible combinations of the real and imaginary
parts of X and Y , E{XreY re}, E{XimY im}, E{XreY im},
and E{XimY re} to vanish.

2.2. ICA by Nonlinear Decorrelations

Consider the traditional ICA problem with linear mixing, i.e., the
vector of observed random variables x ∈ C

n can be written as a
linear mixture of the sources s ∈ C

n, such that x = As where
A ∈ C

n×n. We assume that there are as many sources as mix-
tures and the data are preprocessed such that E{x} = 0 and
E{xxH} = I. The sources s are assumed to be statistically inde-
pendent and the source estimate u is given by u = Wx, i.e., WA
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Fig. 1. Real, imaginary, and modulus characteristics of five complex functions

should approximate a permutation matrix. Note that for the com-
plex case, an additional component of the scaling ambiguity is the
phase of the sources since all variables are assumed to be complex-
valued. Hence the permutation matrix will have one nonzero, unit
magnitude element in each row.

In [5], we show that by using the complex tanh function, a
complex-valued version of Infomax [3] can be derived and per-
forms better than the approach using bounded but nonanalytic com-
plex function defined by splitting the real and imaginary parts as
tanh(ure) + j tanh(uim). The update for the complex Infomax
using natural gradient is given by [5]

∆W = µ
[
I − ϕ(u)uH

]
W (2)

where the nonlinearity is chosen as tanh(u) and in the update used
as ϕ(u) = 2 tanh(u).

For the stationary solution of the learning rule in (2), i.e., for
E{∆W} = 0,

E{ϕ(uk)ul
∗} = 0, for k �= l (3)

and
E{ϕ(uk)uk

∗} = 1 (4)

where uk is the kth element of u. These conditions imply that the
expression given in (1) is satisfied, as when the random vector x
is centralized, E{u} = E{Wx} = 0. However, the condition
in equation (1) should be satisfied for all g(·) and h(·). In the
form given above, h(·) is the identity function. Hence, in order to
approximate the condition in (1) by the conditions in (3) and (4),
ϕ(·) should be rich enough to generate a wide range of higher or-
der statistics. Assume that in a given region, the MacLaurin series
expansion of ϕ(uk) converges and is written as

∑∞
i=0 ϕiu

i
k with

ϕi as the coefficients for the ith power of uk. The nonlinear decor-
relation condition in (3) then implies

∑∞
i=0 ϕiE{ui

ku∗
l } = 0, i.e.,

E{(ure,k + juim,k

)i (
ure,l − juim,l

)} = 0

for i = 0, 1, . . ., an expansion quite rich, generating a large num-
ber of decorrelation terms. This is needed in order to establish
higher order decorrelations of different sources as well as of their
real and imaginary parts as discussed in section 2.1. In contrast, the
split type nonlinearity, e.g. as defined in [12], ϕ(uk) ≡ ϕ(ure,k)+

jϕ(uim,k) implies

∞∑
i=0

ϕ
i
E

{
(ui

r,k + jui
im,k)(ure,l − juim,l)

}
= 0,

a more limited expansion in producing the higher order terms.
In [8], ICA by using nonlinear decorrelations was proposed

for real variables, with the update equation given as

∆W = µ
[
Λ − g(u)(h(u))H

]
W. (5)

where Λ is a diagonal matrix. If Λ is chosen as the identity matrix,
g(·) as ϕ(·), and h(·) as the identity function, the update becomes
equal to the Infomax update with natural gradients. As shown by
a number of authors, the Infomax approach is equivalent to maxi-
mum likelihood estimation when ϕ(·) matches the cumulative dis-
tribution function (cdf) of the sources. When complex functions
are employed to generate the nonlinearities, direct connection to
the cdf is lost as their cdf is defined as a real-valued function, the
joint distribution of the real and imaginary parts. As we discuss
in the following sections, there is a similar relationship between
the characteristics of the nonlinear functions and the type of distri-
butions they can approximate for the complex case as well, even
though they can no longer be identified as cdfs.

2.3. Functions for Decorrelation

The following functions are noted to provide the nonlinear decor-
relation required for ICA when used for the nonlinear function
ϕ(z) in the update given in (2).

Circular functions: tan z and cot z,
Inverse circular functions: atan z, asin z, and acos z,
Hyperbolic functions: tanh z and coth z,
Inverse hyperbolic functions: atanh z, asinh z, and acosh z.

As expected, the trigonometric and the corresponding hyperbolic
functions (tan z and tanh z e.g.) behave very similarly—their re-
sponses are simply π/2 rotated versions of each other. In partic-
ular, the functions: atan z, asin z, acos z, and tan z, and their
hyperbolic counterparts performed consistently well over a wide
range of input and mixtures, while the functions: sin z, cos z, acot
z, sinh z, cosh z, and acoth z exhibited unstable behavior when
used for ICA with the update given in (2) in our simulations.

In Fig. 1, we plot the characteristics of atan z, asin z, acos z,
and tanh z along with split tanh z ≡ tanh(zre)+jtanh(zre), a non-
analytic function defined to satisfy the boundedness property in the
complex domain [12]. As we show by examples in the simulations
section, the inverse sine, cosine, and tangent—as well as their hy-
perbolic counterparts—provide particularly robust performance.
Note that all these three functions, behave like an odd function,
i.e., they satisfy: acos z = π − acos(−z), asin z = − asin(−z),
and atan z = − atan(−z) for all z ∈ C. This behavior can be
noted by the transitions from positive to negative in either the real
or the imaginary response of these functions as shown in Fig. 1.
Also, as an example, consider the MacLaurin expansion of inverse
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Asymmetry Minimum Relative Entropy
(σr/σim) split tanh tanh atanh asin

1 0.105 0.280 0.067 0.059
3.3 0.309 0.121 0.095 0.026

33.3 0.949 0.110 0.081 0.026

Table 1. The minimum relative entropy distance of the output
distribution to the uniform distribution for the nonlinearities shown
in Fig. 2

tangent: atanz = z− 1
3
z3 + 1

5
z5− 1

7
z7 . . . , given for all z, imply-

ing a structure rich in generating the higher order decorrelations.
Also worthwhile to note is the squashing, or “cdf-like” character-
istics of these functions in one of its components, the real or the
imaginary, a property relevant to the discussions in the simulations
section. Because of the sign reversal in the response of the inverse
cosine function, it is used with a negative sign in the update equa-
tion (2), i.e., ϕ(z) = −2 acosz.

It is important to note that all functions that provided good
performance–these shown in Fig. 1– are saturating type nonlinear-
ities, or have decreasing rate of growth as we move away from the
origin. This property, we conjecture, help these functions in reach-
ing a stable point to satisfy equations (3) and (4). The inverse sine
and cosine classes have branch cut-type singularities, while the
tangent family possess point singularities that are periodic —at
(1/2 + n)π, n ∈ N for tanh z and (1/2 + n)πj for tanh z— and
the inverse tangent family isolated singular points—at ±j for atan
z and at ±1 for atanh z. All these singular points have measure
zero and hence should not affect the performance in an implemen-
tation, an observation also verified in our simulations. The supe-
rior performance of acos z, asin z, and atan z suggests that the
variability in their responses for the real and imaginary provides
a richer structure in generating the higher order statistics to sat-
isfy the independence of their outputs. Though their responses are
not shown here, due to space limitations —a good resource for the
properties of trigonometric and hyperbolic functions are the Math-
World pages at http://mathworld.wolfram.com/— it is
worth noting that functions for which we observed unstable behav-
ior such as the sin z and cos z have oscillatory type characteristics
in their real and imaginary responses and have an increasing rate
of growth as we move away from the origin.

Another way to assess the richness of a nonlinear function in
generating higher order statistics is to look at the distribution of
its output. As in the motivation for Infomax [3], the output of
ϕ(x) will approximate a uniform distribution if maximal infor-
mation transfer is achieved through optimization of the weights
W. In Fig. 2, we plot the output distribution for four nonlinear
functions, split tanh z, tanh z, atan z and asin z for a given sin-
gle dimensional complex Gaussian input for three values of w, as
well as the optimal output when the input distribution is highly
asymmetric. The ability of the four functions to approximate a
uniform distribution is quantified in Table 1. The minimum rela-
tive entropy distance of the output distribution from the uniform
is given for the four nonlinear functions shown in Fig. 2. As ob-
served in the figure and the table, all nonlinear functions perform
well when the real and imaginary channels have the same vari-
ance, but the split-complex approach degrades significantly as the
asymmetry increases. The three complex functions, especially the
inverse hyperbolic tangent and the inverse sine provide superior
performance in adapting to different input characteristics, which is
also confirmed by our numerical simulation examples.

3. SIMULATIONS

The update given in (2) is tested with a number of complex and
‘split-complex’ type nonlinear functions from the trigonometric
and hyperbolic family. For a wide range of source types and mix-
ing matrices, most of the functions listed in section 2.3 yielded
robust and satisfactory performance. We provide three example
cases, particularly two for which performance degradation is ob-
served.

Correlation of modulus
Source 1 Source 2 Source 3

1
2
ϕ(·) kurt = 1.03 kurt = −0.57 kurt = 1.70
atan 0.99±0.02 0.98±0.05 1.0±0.0

atanh 0.99±0.02 0.98±0.05 1.0± 0.0
asin 0.93±0.09 0.85±0.18 1.0±0.01

−acos 0.94±0.09 0.86±0.18 0.99±0.01
tanh 0.97±0.05 0.93±0.12 0.99±0.03

split tanh 1.0±0.0 1.0±0.0 1.0±0.0
split atan 1.0±0.0 1.0±0.0 1.0±0.0

Table 2. Correlation of the modulus of sources with the modulus
of the estimates (all sources have symmetric distributions)

Correlation of modulus
Source 1 Source 2 Source 3

1
2
ϕ(·) kurt= 4081 kurt= −0.72 kurt = 8.12 × 107

atan 0.99±0.05 0.91±0.11 1.0±0.0
atanh 0.99±0.0 0.93±0.0 1.0±0.0
asin 0.94±0.15 0.84±0.20 0.92±0.15

−acos 0.94±0.12 0.86±0.18 0.94±0.12
tanh∗ 0.45±0.28 0.21±0.17 0.81±0.09

split tanh 0.26±0.01 0.07±0.03 0.84±0.10
split atan 0.25±0.06 0.08±0.03 0.83±0.10

Table 3. Correlation of the modulus of sources with the modulus
of the estimates (∗ denotes that the learning rate is chosen smaller
for convergence and the asymmetry of the distributions in terms
of the ratio of the standard deviations σre/σim are given by 0.10,
0.35, and and 67.34.)

In the simulations, the source realizations are kept fixed and
the complex-valued mixing matrix is varied for 50 independent
runs. The sources are characterized in terms of their kurtosis val-
ues, the asymmetry of their real and imaginary distributions, and
the correlation of their real and imaginary parts. The kurtosis is de-
fined as in [4]: kurt(s) = E{|s|4}− 2

(
E{|s|2})2 − ∣∣E{s2}∣∣ for

a zero mean random variable s. Hence, for a zero-mean unit vari-
ance Gaussian random variable with independent real and imag-
inary parts of equal variance, the kurtosis is zero. The mixtures
are whitened to zero mean and unit variance prior to ICA, and an
adaptive step size µ is used to help with convergence as in [3]. The
correlation of the real and imaginary parts of the sources made lit-
tle difference in performance, and in the three example cases we
show the correlation of real and imaginary part of the sources is
negligible. As would be expected, the performance of approaches
assuming symmetric distributions as in [2] and [11] degraded when
the condition for symmetric source distributions is not met.

For a large number of zero mean, unit variance sources with
positive kurtosis most nonlinearities listed in Tables 2-4 provided
robust and very good performance in terms of correlation with the
modulus and the real and imaginary parts. Performance degra-
dations are observed when sources with negative kurtosis are in-
cluded in the mixture and when the sources are not normalized
such that they have asymmetric standard deviations in real and
imaginary. Examples for these cases are shown in Tables 2-4.

Also as the responses of the trigonometric functions and their
hyperbolic counterparts are very similar —90 degrees rotated ver-
sions of each other— their performances in performing ICA were
very similar as well. We show an example of this behavior for
tanh and atanh in the tables. As noted in section 2.2, by using
a complex nonlinearity, the direct connection to maximum likeli-
hood estimation of the Infomax update is lost, however the perfor-
mance differences for sources with negative and positive kurtosis
suggest a similar extension is possible. For the case in Table 4,
where all nonlinearities failed to provide a reasonable approxima-
tion to the sources with negative kurtosis, an ‘extended’ type non-
linearity that is matched to sub-Gaussian sources [10] (the form
used in the simulations replaces the term in parentheses in (2) with
[1 + tanh(u)uH −uuH ]) yielded better performance than the all
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Fig. 2. Approximation by four different nonlinear functions

Correlation of modulus
Source 1 Source 2 Source 3

1
2
ϕ(·) kurt= −0.24 kurt= −0.51 kurt = 1.76
atan 0.64±0.18 0.62±0.19 1.0±0.0

atanh 0.60±0.13 0.56±0.13 1.0±0.0
asin 0.63±0.18 0.61±0.20 0.96±0.07

−acos 0.63±0.17 0.60±0.18 0.96±0.09
tanh 0.71±0.22 0.70±0.22 0.97±0.09

split tanh 0.45±0.04 0.41±0.04 1.0±0.0
split atan 0.47±0.06 0.43±0.06 1.0±0.0

Table 4. Correlation of the modulus of sources with the modulus
of the estimates (all sources have symmetric distributions)

seven functions listed in Table 4, and the correlation of the modu-
lus of the estimates for sources 1–3 for this case are: 0.86 ± 0.17,
0.89±0.18, and 0.78±0.16. Note that the performance of the ex-
tended nonlinearity is worse for the third source that has a positive
kurtosis.

4. SUMMARY

We introduced a number of complex nonlinearities for ICA of
complex valued sources. Because these functions are analytic,
they satisfy the Cauchy-Riemann conditions, and their implemen-
tation is very straightforward. If they are used in a framework
that starts from an objective function, their true gradient can be
computed directly and is guaranteed to point in the right direction,
direction of maximal change, as opposed to ‘pseudo-gradients’ of
the split approach. In this paper, our starting point has been the
update equation that generates higher-order statistics for indepen-
dence of the estimates as in [8], an approach that yields exact
same expression as the widely-used practical Infomax algorithm
[3]. One of the reasons for taking this approach, starting by the
update, has been the difficulty in providing a direct relationship to
maximum likelihood for the complex nonlinearities, an argument
that helps with the interpretation of nonlinearities as the cdf. The
results we present however, note that a similar argument might be
possible, though might not be direct as in the real-valued case. One

possibility is to investigate an approach similar to that of [1] that
uses estimating functions.
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