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ABSTRACT

The performance of a statistical signal processing system
depends in large part on the accuracy of the probabilistic
model used. This paper presents a robust probabilistic mix-
ture model based on a generalization of the Dirichlet distri-
bution. An unsupervised algorithm for learning this mixture
is given, too. The proposed approach for estimating the pa-
rameters of a Dirichlet mixture is based on the Maximum
Likelihood (ML) and Fisher scoring methods. Experimen-
tal results involve human skin color modeling and its appli-
cation to skin detection in images.

1. INTRODUCTION

Many signal processing techniques employ mixture models.
The performance of such approach depends in large part on
the accuracy of the model- that is, which density is used
to model the data. The isotropic nature of Gaussian func-
tions, along with their capability for representing the distri-
bution compactly by a mean vector and covariance matrix,
have made Gaussian Mixture Decomposition (GM) a popu-
lar technique. The Gaussian mixture is not the best choice
in all applications, however, and it will fail to discover true
structure where the partitions are clearly non-Gaussian [1].
In this paper we present a generalization of the Dirichlet
distribution which can be a very good choice to overcome
the disadvantages of the Gaussian. The Dirichlet distribu-
tion is the multivariate generalization of the Beta distribu-
tion, which offers considerable flexibility and ease of use
[2]. In fact, it was used in many image processing applica-
tions such as the identification of the blur and the restoration
of noisy images [3] and image database categorization [4].
Although its flexibility the Dirichlet distribution has a very
restrictive covariance structure as we will show in the next
section. In this paper, we will present a method to estimate
the parameters of a generalized Dirichlet mixture and test it
with real image processing application.
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The paper is organized as follows. The next section de-
scribes the generalized Dirichlet mixture in details. In sec-
tion 3, we propose a method for estimating the parameters
of the mixture. In section 4, we give the complete estima-
tion algorithm. Section 5 is devoted to experimental results.
We end the paper with some concluding remarks.

2. THE GENERALIZED DIRICHLET MIXTURE

If the random vector X = (X1,...,Xqim) follows a Dirich-
let distribution, the joint density function is given by:

dim+1 dim+1
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Where: a; > 0Vi = 1...dim+1, Y%7 X; < 1, Xgimi1 =
1- Y% X;and 0 < X; < 1Vi = 1...dim. The covari-
ance of the Dirichlet distribution are given by:

(X1, Xgim) =
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Thus, any two random variable in X are negatively corre-
lated. In some practical cases, two random variables may
be positively correlated, and hance the Dirichlet distribution
will not be a reasonable choice to be a prior distribution in
mixture analysis. Connor and Mosimann [5] used the con-
cept of complete neutrality to generalize the Dirichlet distri-
bution. Random vector X is said to be completely neutral if
(X1,...,Xj;) is independant of (X;41,...,Xgim)/V; for
all j < dim, where V; =1 - X; — Xy —... — X;. Let
Zy = Xyandlet Z; = X;/V;_q forj = 2,3...,dim.
When the Z; are independant, then X is also completely
neutral. Connor and Mosimann supposed that each Z; has a
beta distribution with parameters a;; and 3;, and derived the
density function for the generalized Dirichlet distribution as
follows:

Dy + B
(X1, Xgim) = H %
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forZ?;TXi <land0 < X; < 1fori =1...dim, where
Yi = ,Bz — Q41 _ﬂi-f-l fori =1...dim—1 and'yd,-m =
Baim — 1. Note that the generalized Dirichlet distribution is
reduced to a Dirichlet distribution when 8; = a;1+1 + Bir1-
A generalized Dirichlet mixture with M components is de-
fined as :

M

p(X/0) =" p(X/j,0;)P(j) )
j=1

where the P(j) (0 < P(j) < 1 and Zj’:"f P(j) = 1) are

the mixing proportions and p(X /3, ©;) is the generalized

Dirichlet distribution. The symbol © refers to the entire set

of parameters to be estimated:

0 =(ai,...,anr, PQ1),...,P(M))

where & = (aj1, 851, - Qjdim, Bjdim) is the parame-

ter vector for the j** population. In the following devel-

opments, we use the notation ©; = (aj, P(j)) for j =1

..M.

3. MAXIMUM LIKELIHOOD ESTIMATION

With ML estimation, the problem of determining © becomes:

mazep(X /0) (5)

with the constraint: Zj\il P(j)=1and P(j) >0 Vje€
[1, M]. These constraints permit us to take into considera-
tion a priori probabilities P(j). Using Lagrange multipli-
ers, we maximize the following function:

3(X,0,4) = n(p(X/0)) +A(1- 3L, P(i))
+ u Z]Ai1 P(j)?

(6)
where A is the Lagrange multiplier. For convenience, we
have replaced the function p(X /©) in Eq. 5 by the func-
tion In(p(X/©)). If we assume that we have N random
vector X; which are independent, we can write: p(X /0) =

H?; P(Xi/G), thus:

8(X,0,4) = XL (35 p(Xi/d 0)P()
+ AQL-XM PG) + XM, P2()

(N
In order to automatically find the number of components
needed to model the mixture, we use an entropy-based cri-
terion. Thus, the first term in Eq. 7 is the log-likelihood
function, and it assumes its global maximum value when
each component represents only one of the feature vectors.
The last term (entropy) reaches its maximum when all of
the feature vectors are modeled by a single component, i.e.,
when P(j1) = 1 for some j1 and P(j) = 0,Vj4,j # j1.
The algorithm starts with an over-specified number of com-
ponents in the mixture, and as it proceeds, components com-

pete to model the data. We will now try to resolve this op-
timization problem. To do this, we must getermine the so-
lution to the following equations: -5 ®(X,®,A) = 0 and
29 (X,0,A) = 0. Calculating the derivative with respect
to ©;, we obtain:

N

o . . . p) .
—®(X,0,A) = 1/Xi,0;) =—In(p(X;/7,0;
6(_)] ( ) ) ) ;p(-j/ (2] ])6(')] n(p( 1/]) ]))

= ®)
where p(j/X;, ©;) is the posterior probability.
Since p(X; /3, ;) is independent of P(j), straight forward
manipulations yield:

e N pP () Xy, @) + 2u(p?(5))H
P(j) e = 7 ,
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In order to estimate the & parameters we will use the fact
that each Z; (see section 2) has a beta distribution with pa-
rameters ; and 3;. Then, the problem of estimating the pa-
rameters of a generalized Dirichlet mixture can be reduced
to the estimation of the parameters of dim beta mixtures.
For this, we must maximize this equation for every dimen-
sion:

®2(Z,80) = Ly (7L Poeta(Zial 3, 6ja) P ()

(10
where 0 < d < dim, ppetq 1 the Beta distribution, 8 =
(@1d; Bids - - - s @md; Byma)s 050 = (ja, Bja) and P(j) are
the mixing parameters founded by Eq. 9. This approach
which consist of considering a multidimensional density as
individual 1-dimensional densities was previously used in
[6] in the case of Gaussian mixture. In order to estimate
the 64 parameters we will use Fisher’s scoring method. The
scoring method is based on the first, second and mixed deriva-
tives of ®z(Z, 64) function. During iterations, the a4 and
Bja can become negative. In order to overcome this prob-
lem, we reparametrize, setting a;- 4 = €% and ﬂ;. 4= ePid,
where a; 4 and ﬂ;. 4 are unconstrained real numbers. Given a
set of initial estimates, Fisher’s scoring method can now be
used. The iterative scheme of the Fisher method is given by
the following equation:

- new -, old 0%z old
a jd Q jq 8a’;
J _ J ld d
(i) (o) ove
gd jd 06’ ja

(11)
where j is the class number: 1 < j < M and d is the current
dimension: 1 < d < dim.

The variance-covariance matrix V' is obtained as the inverse
of the Fisher’s information matrix I. The information matrix
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4. ALGORITHM

In order to make our algorithm less sensitive to local max-
ima, we have used some initialization schemes including
the Fuzzy C-means and the method of moments (MM) [2] .
Thus, our initialization method can be resumed as follows:
INITIALIZATION Algorithm

1. INPUT: dim-dimensional data X;,i =1,..., N and
the number of clusters M.

2. Apply the Fuzzy C-means to obtain the elements, co-
variance matrix and mean of each component.

3. Compute the Z;. Z; = Xy and Z; = X;/V;_4 for
j = 2,3 . .,d’im, Wherer = 1—X1—X2—. . _X]

4. Apply the MM for each component j and for each
dimension d to obtain the vector of parameters 6;4.

5. Assign the data to clusters, assuming that the current
model is correct.

6. If the current model and the new model are suffi-
ciently close to each other, terminate, else go to 4.

With this initialization method in hand, our algorithm for
estimating of generalized Dirichlet mixture can be summa-
rized as follows:

GENERALIZED DIRICHLET MIXTURE ESTIMATION
Algorithm

1. INPUT: dim-dimensional data X;,s =1,..., N and
an over-specified number of clusters M.

2. Apply the INITIALIZATION Algorithm.

3. Update the 6;61 using Eq. 11,5 =1,..., M. andd =
1,...,dim.

4. Update the P(j) usingEq. 9,5 =1,..., M.
5. If p(j) < ediscard component j, go to 3.

6. If the convergence test is passed, terminate, else go to
3.

The choice of p is critical to the effective performance of
the algorithm, since it specifies the tradeoff between the re-
quired likelihood of the data and the number of components
to be found. We choose p to be the ratio of the first term to
the last term in Eq. 7 of each iteration. Convergence tests
could involve testing the stabilization of the & or the value
of the maximum likelihood function.

aq 51 a2 52 P(j)
Classl 55.39 64.84 32.50 25.65 0443
Class2 6396 102.53 124.36 11534 0.557

Table 1. Mixture of Dirichlet Skin Color Model

aq B1 a2 B2 P(j)
Classl  26.45 2534 429 3.15 0.120
Class2 16.13 42.74 8.22 395 0.560
Class3  31.97 18.07 0.36 0.05 0.087
Class4 124.16 107.83 19.80 6.55 0.133

Table 2. Mixture of Dirichlet non-skin Color Model

5. EXPERIMENTAL RESULTS

The application concerns modeling for human skin color us-
ing the Dirichlet mixture. In fact, human skin color has been
used and has proven to be an effective feature in many ap-
plications including teleconferencing, face recognition, and
gesture recognition. The motivation for using a Dirichlet
mixture is based on the observation that the color histogram
for the skin of people with different ethnic backgrounds
does not form a unimodal distribution, but rather a mul-
timodal distribution. Although different people appear to
have different colored skin, several studies have shown that
major difference lies in intensity rather than in the color it-
self [7]. Thus, the common RGB representation of color
images is not suitable for characterizing skin color because
in the RG B space, the triple components rgb represent not
only color but also luminance. To build a skin color model,
we can use CIE LUV or the chromatic color spaces and
discard the luminance value. In our case, we have used
chromatic colors (also known as pure colors in the absence
of luminance), defined by a normalization process as shown
here: rl = T+§_hb, gl = T+§+b and bl. = %ﬁb. Ip or-
der to train for skin color, we used color images containing
human faces and extracted the skin regions in these images
manually. Our training set contained more than six hundred
images containing human skins of different races. The total
number of pixels analyzed was 10867932 (skin color pix-
els), where each sample consists of two values (r1, g1). We
used our algorithm to estimate the parameters of the Dirich-
let mixture and we found 2 components (see Table 1). The
estimated density function is shown in Fig. 1. To improve
our application, we train for non-skin model, too. The train-
ing set contains 23256874 non-skin color pixels. Table 2
shows the estimated parameters of this dataset and we ob-
tain 4 classes.

Given an image, a segmentation was performed to ob-
tain homogenous regions. Each pixel was classified as skin
color if its probability measure to be a skin was above a
threshold and its probability measure to be a non-skin was
below another threshold. Each region was then recognized

V-523



(a) original image

(b) Extraction by a mixture of Gaussian
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(c) Extraction by a mixture of Dirichlet

Fig. 2. Original image and results of skin detection in different cases.

as a skin area if most of the pixels in the region had a high
probability of being skin color. Figure 2 shows the results of
skin detection in different cases. Skin color alone is usually
not sufficient in detecting human faces or hands. However,
a good estimated mixture is very useful in simplifying the
task of skin area detection. Using skin color and area in-
formation, human faces can be detected robustly [7]. In our
application, if more than 75% of the pixels in a region are
classified to be skin color, then the region is recognized as a
skin area.

6. CONCLUSION

In this paper, we have introduced a new mixture, based on a
generalization of the Dirichlet distribution. The generalized
Dirichlet distribution has the advantage that by varying its
parameters, it permits multiple modes and asymmetry and
can thus approximate a wide variety of shapes. We esti-
mated the parameters of this mixture using the maximum
likelihood and Fisher scoring methods. The experiments in-
volved the detection of human skin color. From the results,
we can say that the Generalized Dirichlet mixture has good
modeling capabilities.
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