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ABSTRACT

In this paper, we propose minimizing the Fisher
information of the error in supervised training of linear
and nonlinear adaptive filters. Fisher information
considers the local structure of the error probability
distribution and therefore, it is a criterion that deserves to
be investigated as an alternative to more common
statistics such as minimum mean-square-error or 
minimum-error-entropy. A gradient-based training
algorithm based on a nonparametric estimator of Fisher
information is presented and the performances of the three
mentioned optimization criteria is compared using Monte
Carlo simulations.

1. INTRODUCTION 

Traditionally, supervised training of adaptive filters is
performed using the mean-square-error (MSE) as the
optimality criterion. The main reason for the wide use of
MSE lies in the fact that quadratic criteria combined with
linear systems result in analytically tractable mathematics
and lead to solutions like the Wiener-Hopf equation [1].
In the case of linear systems and Gaussian distributed
signals, second-order statistics are able to extract all the
information present in the data, thus yield optimal training
solutions in an information theoretic perspective.

However, many contemporary signal processing
problems extend beyond the linearity and Gaussianity
assumptions, therefore to achieve optimality in an
information theoretic framework, one has to go beyond
second-order statistics as optimality criteria in adaptation. 
In order to achieve these extensions to information
theoretically optimal adaptation rules, we need to consider
the higher-order statistics of the signals since arbitrary
distributions, unlike the Gaussian, are not only
characterized by their second-order statistics.

Information theoretic criteria provide natural and 
intuitive means of dealing with higher-order statistics of

the signals, since they are derived based on particular
postulates such as additivity [2]. Entropy, which measures
the average information content in a random variable with
a particular probability distribution was previously
proposed as a criterion for supervised adaptive filter
training and it was shown to provide better neural network
generalization compared to MSE [3]. 

As can be intuitively understood from the nature of 
entropy and from the experimental results in previous
publications, minimizing the error entropy (MEE) tends to
result in spikier optimal error distributions compared to
MSE. In certain situations, this spikiness of the error 
distribution might be undesirable, especially when we aim
for smooth error distributions. While the minimum error
entropy criterion will maximize the information transfer
from the training data to the weights of the adaptive
system by minimizing the expected information content of 
the residual error, it does not explicitly act to improve the
robustness of the solution in terms of variance in
estimated optimal weights. 

A criterion that will consider the local structure of the
error distribution is Fisher information [2]. Minimizing
the Fisher information of the error will result in an
optimal solution such that small perturbations in the error
distribution due to variances in the weights will cause
minimal fluctuations in the criterion. The connection
between Fisher information and the Cramer-Rao bound 
[4] also provides another motivation for using this
quantity as an optimality criterion. Nevertheless, at this
time, there is no rigorous mathematical link between
minimizing the error Fisher information and minimizing
the variance of the optimal weight estimates.

Since, in general, the signal distributions are either
unknown or difficult to guess, a nonparametric approach 
to the estimation of the distributions involved in the
problem will provide a more generic solution to the
adaptation problem. Parzen windowing is a simple and
data efficient density estimation technique, which results
in smooth estimates, whose bias and variance can be 
controlled by the width of the kernel function used (called
the kernel size). The smoothness is particularly important
in adaptation, since first or second order gradient methodsThis work was supported by NSF grant ECS-0300340.
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are often used in learning algorithms. In addition, we have
observed that there is a functional similarity between the
kernel size of the Parzen window density estimate and the
width of the smoothing functional in convolution
smoothing method for global optimization [5]. Thus, this
free parameter might also serve as a tool to achieve global
optimization; however, this aspect of the proposed 
algorithm will be investigated in a future paper.

This paper is organized as follows: first, a brief
introduction of Fisher information is presented; second, an 
analytical proof that shows the preservation of the global
minimum of Fisher information when it is estimated by
Parzen windowing is given; next, the gradient training
algorithm for an MLP using the minimum error Fisher
information criterion is derived; and finally, the
performance of the proposed training algorithm is
compared with that of MSE and MEE on single-step
chaotic time-series prediction. 

2. FISHER INFORMATION AND ITS ESTIMATION 

In the parameter estimation context, the Fisher
information matrix is defined as the expected value of the
Hessian of the log-likelihood of the data with respect to
the parameter vector [4].
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In (1), p(x; ) is the data likelihood function parameterized
in terms of the vector . The well-known Cramer-Rao
bound is expressed in terms of this matrix as

, where is any unbiased estimator of 

the underlying true parameter vector.
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In the context of supervised learning, we will use a
different definition of Fisher information, however the
latter is still related to the definition in (1) when the
parameter vector  is assumed to be simply the mean of
the data distribution. In this case, the Fisher information
for a random variable X with distribution p(x) becomes
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It can be shown that this version of Fisher information is 
effectively measuring the Kullback-Leibler divergence 
between p(x) and p(x+ x) [6]. Hence, in a supervised 
learning situation, where (2) is evaluated and minimized
for the error signal, we expect the optimal solution to
result in a set of weights such that small perturbations in 
the weights will result in minimal localized perturbations 
in the error distribution. The measure of minimality for

these perturbations is the Kullback-Leibler divergence and 
the error distribution is expected to be smooth and closer 
to uniform compared to MSE and MEE. 

In practice, the Fisher information of the error signal 
must be estimated from its samples. This requires a
smooth (i.e., continuous and differentiable) estimate of its 
distribution. Parzen windowing is a suitable method [7].
Given independent and identically distributed (iid) 
samples {e1,…,eN}, the error distribution can be 
approximated by
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where (x; 2) is typically a zero-mean Gaussian kernel
with standard deviation . The Fisher information can 
then be estimated using 
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Now consider the error’s Fisher information (EFI) in 
the first form given in (2). Note that this expression is 
invariant to changes in the mean of the probability 
distribution, therefore we can assume a mean of zero
whenever necessary, without loss of generality. The
gradient of this quantity with respect to a particular error 
sample ek is (assuming Gaussian kernels) 
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This gradient evaluates to zero for the sample set
e=[e1,…,eN]T=0. Thus, this point in the error space is a 
stationary point of the cost function (if achievable).
Evaluating the eigenvalues of the Hessian matrix of the
criterion at this point, we also observe that it is a local
minimum (with a zero eigenvalue along the direction
where only the mean of the error changes, as expected 
from the mean-invariance property of Fisher information).

Specifically, the diagonal and off-diagonal entries of 
the Hessian at this point are found as 
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This matrix has the following eigenvalues: 0 with
multiplicity 1 corresponding to the eigenvector [1,…,1]T

and >0 with multiplicity N-1 corresponding to the
eigenvectors spanning the remaining orthogonal subspace. 

4/4 N

In summary, minimizing the Parzen window estimate
of Fisher information will try to minimize the error in the
vicinity of this small-error solution.

3. GRADIENT LEARNING USING THE FISHER 

INFORMATION CRITERION 

Suppose we are given a training set in the form of input
vectors xk and desired outputs dk. Consider the
optimization of the parameters of a general class of
nonlinear adaptive systems denoted by yk=g(xk;w). The 
weights are updated according to the steepest descent rule 
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where the gradient is evaluated from
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This learning rule can be interpreted in a particle
interaction framework, where the error samples ek are 
physical particles interacting with each other through the 
kernel function according to the rules defined by the 
gradient update expression in (8). The particles exert
forces on each other; hence they move in space. However, 
the nonlinear filter topology imposes a constraint on the
particles such that their movements are restricted to a 
manifold that is defined by this topology. A similar
analogy was formed for the entropy criteria as well [8].

4. CHAOTIC TIME-SERIES PREDICTION 

In this section, we compare the optimal solutions offered
by three criteria: MSE, MEE and Fisher information. The 
example problem selected is the single-step prediction of 
the chaotic laser time-series [9]. This time-series is 
particularly difficult to predict at the transition points
where the signal collapses suddenly after a slow
expansion. Three structurally identical 14:4:1 TDNNs 
with tanh hidden PEs and linear output [10] are trained
using these three criteria and the mean value of the error 
is set to zero by adjusting the bias of the linear output
processing element of the TDNNs for all three criteria.

The training set consists of 1000 samples from the
time-series and in order to avoid local optima to some
extent, training is started from 100 randomly selected
initial conditions and the optimal weights of each three 
criteria are selected as the weights that perform best
according to each individual cost function. 

The final TDNNs are then subjected to a test set 
consisting of 4000 samples in the single-step prediction
framework. Fig. 1 shows the histograms of the error
distributions of the three TDNNs on this test set. The 
dynamic ranges of the error samples are [-0.5788,0.6459],
[-0.7859,0.6584], and [-0.4512,0.5329] for MSE, MEE,
and EFI, respectively. While the EFI criterion results in
the smallest dynamic range for the test error, the error 
distribution at smaller values (around zero) are relatively
more spread to approach the targeted uniformity, as we 
observe in Fig. 1. Upon investigation of the predictions of
MSE- and MEE-trained TDNNs, we find out that the 
large errors occur at the points of collapse. EFI performs
better at these locations at the cost of slightly increased 
error in the expansion regime of the time-series. A sample
collapse point in the test set is shown in Fig. 2 with the
predictions made by the three TDNNs. Notice that the
EFI-trained network performs better in this region
compared to the MSE- and MEE-trained networks.

A particularly difficult problem is to design a closed-
loop system that can continue to iteratively predict the
chaotic time-series using its previous predictions. Clearly
any network will diverge while performing in this closed-
loop structure due to the very nature of chaotic signals.
Even the smallest error will propagate through the system
to create a divergence in the prediction error.
Nevertheless, a good indicator of quality of a model for 
chaotic systems is how long their prediction accuracy 
survives in this closed-loop prediction scheme. Therefore,
we subject the three TDNNs trained by the optimization
criteria (on the same training data set) to this test and let 
them iteratively predict the laser time-series by feeding
their own outputs back as inputs. In this procedure, we
test the TDNN models on 1000 test sets (each of length 
60) starting from randomly selected initial points to
obtain a Monte Carlo evaluation. The normalized MSE
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and the standard deviation values for the three predictions
over the MC test are 1.0306 1.0291 (MSE),
1.4562 1.5448 (MEE) and 1.0690 0.4743 (EFI). The 

robustness of the EFI is shown in the smaller variance. A
representative prediction output is shown in Fig. 3. 
Clearly, the MSE and MEE trained networks fail to
follow the abrupt signal nonstationarity, while the EFI-
trained TDNN maintains a relatively high accuracy in its 
prediction of the signal.
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Figure 1. Test error histograms for MSE, MEE, and EFI trained TDNNs. 
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Figure 2. A sample collapse point in the test set from the laser time-
series. Actual and predicted values for MSE, MEE, and EFI trained
TDNNs in open-loop testing. 
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Figure 3. Closed-loop prediction at a sample collapse point in the test set 
using the MSE, MEE, and EFI trained TDNNs. 

5. CONCLUSIONS 

Supervised training of nonlinear adaptive filters using
non-Gaussian data requires considering more information
than what is present in only the second-order statistics.
Therefore, in this paper, we proposed using the Fisher
information as an optimality criterion. A nonparametric
estimator based on Parzen windowing is presented and the
performance of the resulting training methodology is
compared with mean-square-error and error-entropy
approaches on the laser time-series prediction example.
The Fisher information approach yielded a more robust
optimal solution that was able to cope with the abrupt
nonstationarities in the data more effectively. However,
this came at a cost of increased error at the relatively
stationary regimes of the signal.
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