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ABSTRACT

An important general model for discrete-time signal processing is
the switching state space (SSS) model, which generalizes the hid-
den Markov model and the Gaussian state space model. Inference
and parameter estimation in this model are known to be computa-
tionally intractable. This paper presents a powerful new approxi-
mation to the SSS model. The approximation is based on a vari-
ational technique that preserves the multimodal nature of the con-
tinuous state posterior distribution. Furthermore, by incorporating
a windowing technique, the resulting EM algorithm has complex-
ity that is just linear in the length of the time series. An alterna-
tive Viterbi decoding with frame-based likelihood is also presented
which is crucial for the speech application that originally motivates
this work. Our experiments focus on demonstrating the effective-
ness of the algorithm by extensive simulations. A typical example
in speech processing is also included to show the potential of this
approach for practical applications.

1. INTRODUCTION

The switching state space (SSS) model is a probabilistic dynamic
system which combines discrete and continuous dynamics. It gen-
eralizes the hidden Markov model (HMM) and the linear state
space model. Whereas the state space model describes an observed
time series in terms of a continuous hidden state vector whose
dynamics is specified by the dependence of the current state on
the previous one, in the SSS those dynamics depend on additional
states which are discrete. Hence, the dynamics generally vary with
time, producing a powerful model with applications in many do-
mains, such as speech processing [1], control [2], machine vision
[3] and financial analysis [4]. In the machine learning community,
the SSS model belongs to a class of models termed conditional
linear Gaussian (CLG) models[5], which has also been attracting
interest recently.

Whereas inference and parameter estimation in HMM and the
state space model can be done exactly using the EM algorithm
(known as Baum-Welch for the former and Kalman-Rauch for the
latter), it is well known that inference in SSS is computationally
intractable [6]. More generally, it has been shown that inference
in CLG models is NP-hard [5]. Here a new approximation scheme
for the SSS model is presented, based on a multimodal variational
technique. Variational methods are first applied to similar mod-
els by Ghahramani and Hinton [6], and some important differ-
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Fig. 1. The model (a) and the variational posterior (b) represented
as Bayesian networks.

ences between their work and ours will be pointed out as we de-
velop our approach in the following sections. This paper builds on
previously-published theoretical results [7]1; here we will develop
important extensions, backed up by extensive simulation results.

The remainder of the paper is organized as follows: The model
used in this work is described in Section 2, followed by some de-
tails of the algorithm development in Section 3. Section 4 shows
the effectiveness of the algorithm by simulation examples, and fi-
nally Section 5 concludes the paper by a typical speech processing
example and a brief discussion.

2. THE SWITCHING STATE SPACE MODEL

We start with the definition of the switching state space (SSS)
model. This is a probabilistic model that describes multivariable
time series data in terms of two types of hidden variables (also
termed states): discrete and continuous. The hidden variables form
two first-order Markov chains, where the continuous chain is con-

1Two methods were developed in [7]: one is the progenitor to the
present paper; the other, on which all the experimental results in [7] were
based, is unrelated and not further pursued for its lack of efficiency as well
as accuracy.
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ditioned on the discrete one. Let yn denote the observed data at
time n = 1 : N , and sn and xn denote the discrete and contin-
uous hidden states, respectively, at that time. The discrete states
may assume one of S values, where s = 1, ..., S. We have

p(sn = s | sn−1 = s′) = πss′ ,

p(xn | sn = s,xn−1) = N (xn | Asxn−1 + as,B
−1
s ),

p(yn | sn = s,xn) = N (yn | Csxn + cs,D
−1
s ),

(1)

and the initial states at n = 0 are

p(s0 = s) = π0
s , p(x0 | s0 = s) = N (x1 | a0

s,B
0
s) . (2)

The full joint distribution of the model is given by

p(y1:N , x0:N , s0:N | Θ) =

NY
n=1

p(yn | xn, sn)p(xn | sn,xn−1)

· p(sn | sn−1)p(x0 | s0)p(s0) , (3)

where the parameters are

Θ = {πss′ , π
0
s ,As,as, a

0
s,Bs,B

0
s,Cs, cs,Ds} . (4)

Fig. 1 shows the graphical representation of the SSS model,
where the conditional independence relations are illustrated clear-
ly. Notice that our model implicitly forces a continuity constraint2

on x1:N so that it fits nicely into the Bayesian framework when
x1:N is treated as a smoothness prior for y1:N [8]. Such a con-
tinuity constraint is not present in many other SSS models, such
as the one in [6] where there are M underlying linear dynamic
processes but only one of them is observed at a given time.

EM parameter estimation in probabilistic models generally in-
volves iterating between an E-step, which updates the posterior
distribution over the hidden states (and the moments of the poste-
rior, a.k.a. sufficient statistics), and an M-step, which updates the
model parameters. As is well-known, in the SSS model the E-step
is computationally intractable, because the exact computation of
the posterior distribution requires summing over all possible con-
figurations of s1:N , whose number is O(eN ). In the following
section we derive a new approximation scheme for this posterior.

3. A MULTIMODAL VARIATIONAL APPROXIMATION

In the variational approach we approximate the exact posterior
p(s1:N ,x1:N | y1:N ) by a distribution with a tractable structure,
denoted by q. Here we choose the following partially factorized
structure shown graphically in Fig. 1:

p(s0:N ,x0:N | y1:N ) ≈ q(s0:N ,x0:N | y1:N )

=
NY

n=1

q(xn | sn)q(sn | sn−1) · q(x0 | s0)q(s0) .
(5)

As is costumary to the notation in variational methods, the data
dependence of the q’s is omitted but always implied.

Whereas q is an approximation, it preserves important features
of the exact posterior. In particular, (1) it incorporates temporal
correlations via the Markov chain structure of q(s1:N ), (2) it in-
corporates correlations between the continuous and discrete states,

2Further smoothness can be enforced by constraining the first and/or
higher orders of derivatives to be continuous as well.

and most significantly (3) it incorporates multimodality of the con-
tinuous states since q(xn) =

P
s q(xn | sn = s)q(sn = s) is a

mixture distribution. On the other hand, it does not directly in-
corporate temporal correlations among xn’s; those are introduced
indirectly via the variational equations below. Previous work on
variational approach to such models [6] uses the factorized form
q = q(x1:N )q(s1:N ). Whereas that form does incorporate tem-
poral correlations among the xn, it results in a q(x1:N ) which is
a Gaussian, and thus unimodal. Nevertheless, such an approxi-
mation can also be applied to our model and a detail comparison
study will be published separately.

To derive q, we start with the functional

F [q] =
X
s1:N

Z
dx1:N q(s1:N ,x1:N )·

[log p(y1:N ,x1:N , s1:N ) − log q(s1:N ,x1:N )]

(6)

and optimize it w.r.t. q, under the restriction that q has the
above structure. This is done by setting the functional derivative
δF/δq(xn | sn) and the ordinary derivative ∂F/∂q(sn | sn−1)
to zero, for each n, and solving the resulting recursive equations,
equivalent to minimizing the KL distance of q to the exact poste-
rior. Here we present the results only, rather than the full deriva-
tion, due to space limitations.

First, notice that the functional form of q(xn | sn) was not
specified in advance. The optimal form, resulting from a free form
optimization, turns out to be a Gaussian with state dependent mean
ρs,n and precision Γs,n,

q(xn | sn = s) = N (xn | ρs,n,Γ−1
s,n) . (7)

Next, we define the following variational posteriors,

γs,n = q(sn = s) ,

ηs′s,n = q(sn = s | sn−1 = s′) ,

η̄s′s,n = q(sn = s | sn+1 = s′) =
ηss′,n+1γs,n

γs′,n+1
.

(8)

We also introduce the notation Es,n, denoting state-conditioned
averaging, via

Es,ng(xn) =

Z
dxn q(xn | sn = s)g(xn) , (9)

where g is an arbitrary function.
Computing q(xn | sn): The precision matrix of q(xn | sn)

is given by

Γs,n = CT
s DsCs + Bs +

X
s′

ηss′,n+1A
T
s′Bs′As′ . (10)

The mean satisfies the linear equation

Γs,nρs,n = CT
s Ds(yn − cs) + Bs(As

X

s′
η̄ss′,n−1ρs′,n−1 + as)

+
X

s′
ηss′,n+1A

T
s′Bs′ (ρs′,n+1 − as′ ) . (11)

Notice that a brute force solution of the last equation by matrix
inversion has complexity O((NS)3), where S is the number of
states. Below we discuss an efficient solution technique using
overlapping windows, whose complexity is significantly lower.
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Computing q(sn | sn−1): We introduce the quantity zs,n for
each time n and state s. It turns out to be the normalization fac-
tor of the posterior transition probability ηs′s,n = q(sn | sn−1).
These probabilities are computed recursively by a backward pass
as follows. First, we initialize zs,N+1 = 1 for all s. Next, for
n = N, ..., 1 we compute

ηs′s,n =
1

zs,n
efs′s,nzs′,n+1 , zs,n =

X
s′

efs′s,nzs′,n+1 , (12)

and for n = 0 we compute

γs,0 =
1

z0
efs,0zs,1 , z0 =

X
s

efs,0zs,1 . (13)

The quantities fs′s,n are given by

fs′s,n = Es′,n
ˆ
log p(yn | xn, sn = s′) − log q(xn | sn = s′)

˜
+ Es′,nEs,n−1 log p(xn | xn−1, sn = s′)

+ log p(sn = s′ | sn−1 = s) , (14)

where the averages are straightforward to compute analytically but
too lengthy to show due to the space constraint here. A similar
result is obtained for fs,0.

Computing q(sn): In addition to the posterior transition prob-
abilities, estimation of the model parameters Θ (M-step) also re-
quires the posterior marginals, which are computed recursively by
a forward pass for n = 1, ..., N ,

γs,n =
X
s′

ηs′s,nγs′,n−1 . (15)

Overlapping windows. As mentioned above, a direct solution
of Eq. (11) for the whole N -point-long time series has complex-
ity which is cubic in N and is thus very expensive. Although a
sparse matrix technique has been applied before [7], the complex-
ity still doesn’t scale well enough to handle large N. Here we use
a procedure motivated by the following observation. Assume the
first N1 data points y1:N1

have been observed and the posterior
over s1:N1 ,x1:N1 has been computed. After observing the next
data point, the posterior is recomputed. Now, if N1 is sufficiently
large, the effect of this new data point on the posterior over the
early states s1,x1 may be vanishingly small.

Hence, we proceed to solve Eq. (11) as follows. We apply an
M -point-long window to the time series and repeatedly increment
its start point by J points. At each increment, we solve Eq. (11)
for the data inside the window to obtain the sufficient statistics.
This procedure has complexityO((MS)2N/J), which is linear in
N . Generally, we choose the smallest M that produces a desired
accuracy; note that this value depends on the temporal structure of
the time series, but is independent of its length N .

E-step: sufficient statistics. As usual, the variational equa-
tions above are coupled, with the equations for ρs,n, Γs,n depend
on ηs′s,n, γs,n and vice versa. These equations are solved iter-
atively starting from a random or more suitable initialization if
available. The solution is the set of sufficient statistics

ϕ = {ρs,n, Γs,n, ηss′,n, γs,n} (16)

which are moments of the variational posterior.
M-step: parameter estimation. Given the sufficient statistics

ϕ, the derivation of the M-step is achieved by taking derivatives of
F w.r.t. the model parameters (details omitted).

Recovering hidden states. It is often needed to estimate the
state sequences x̂1:N and ŝ1:N from the data. For the continuous
states we use the MMSE estimator, defined w.r.t. the variational
posterior, to obtain

x̂n =

Z
dx1:N q(x1:N )xn =

X
s

γs,nρs,n . (17)

For the discrete states the Viterbi algorithm can be applied based
on the variational posterior η, e.g., the initialization and induction
equations for the scoring turn out to be:

V1(s) = max
s′

[πs′0ηs′s,1], Vn(s) = max
s′

[Vn−1(s
′)ηs′s,n].

(18)
Interestingly, it can be shown that identical inference can also be
obtained by applying the Viterbi algorithm on f , where the initial-
ization and induction equations are:

V1(s) = max
s′

[log πs′0 + fs′s,1], (19)

Vn(s) = max
s′

[Vn−1(s
′) + fs′s,n]. (20)

Here f plays the same role as the frame-based likelihood in a stan-
dard HMM. The alternative Viterbi algorithm based on f is crucial
for applications where external sources of information needs to be
included when recovering the discrete hidden states (e.g., language
model score in speech recognition). The external information can
be simply added as an extra term in (19) and (20).

4. SIMULATION EXPERIMENTS

Extensive simulations have been carried out to verify the correct-
ness and effectiveness of the algorithm. The example used here
has four discrete states with the following model parameters:

A1 = 0.7, a1 = 0.6, B1 = 1000, C1 = [0.8 0.3 0.2]
T

, c1 = −[3 2 1]
T

,

A2 = 0.8, a2 = 0.5, B2 = 4000, C2 = [1.0 0.2 0.1]
T

, c2 = [−1 0 1]
T

,

A3 = 0.9, a3 = 0.18, B3 = 694.4, C3 = [0.5 0.4 0.2]
T

, c3 = [0 1 2]
T

,

A4 = 0.6, a4 = 0.88, B4 = 1563, C4 = [0.1 0.7 0.8]
T

, c4 = [1 2 3]
T

,

where D is 100 times the identity matrix for all four states and π is
uniform. Since the E step is an iterative process itself, we have to
initialize ρ and Γ or η and γ, and a suitable initialization scheme
can be very application dependent. In our simulation the ρ’s are
initialized to be a weighted sum of the pseudo-inverse estimation
from y and the target value of x for each s3, and the weights are
determined by the ratio of ‖Bs‖ and ‖Ds‖. The Γ’s are initialized
by

Γs,n = CT
s DsCs + Bs + AT

s BsAs. (21)

Fig. 2 tests the sensitivity of algorithm inference (E step) to
levels of process and observation noise, which are measured by
the precision matrices B and D. In all cases, the discrete state
sequence (indicated by vertical lines) is recovered correctly by
Viterbi decoding on f . The continous states, generally more diffi-
cult to estimate than the hidden discrete states, are recovered well
under moderate noise (a), degraded as expected as the noise levels
increase (b,c), and remain reasonable even in severe noise (d).

The effectiveness of the windowing technique is shown in
Fig. 3, where a window size of ten strikes a good balance between

3x will reach a target as long as A is stable, which is probably the only
case of interest for practical applications.
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Fig. 2. Hidden state recovery under different noise levels:
process noise B−1; observation noise D−1.

0 20 40 60 80 100
1.6

1.8

2

2.2

2.4

2.6

(a) 4 frame window
0 20 40 60 80 100

1.6

1.8

2

2.2

2.4

2.6

(b) 10 frame window

0 20 40 60 80 100
1.6

1.8

2

2.2

2.4

2.6

(c) 20 frame window
0 20 40 60 80 100

1.6

1.8

2

2.2

2.4

2.6

(d) full length window

noise free model
simulated
estimated

Fig. 3. The effect of different window sizes.
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Fig. 4. Model parameter estimation.

Frame (10ms)

F
re

qu
en

cy
 (

kH
z)

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Fig. 5. Tracking VTRs for a speech sentence.

estimation accuracy and computational intensity for this particular
example. Finally Fig. 4 tests the estimation of model parameters c
and D. Given initial values c′ = c − 1 and D′ = D/2, it can be
seen that the variational EM procedure works well: the hidden dy-
namics are recovered well (a) and F is monotonically increasing
and quickly converging (b). The estimates of c and D are accurate,
evidenced by the small error norms (c,d).

5. APPLICATION AND DISCUSSION

The novel variational EM algorithm for SSS models developed in
this paper admits a broad range of applications in signal process-
ing and beyond. Fig. 5 shows one typical example in speech pro-
cessing: vocal-tract-resonance (VTR) tracking for a TIMIT sen-
tence. The tracking works well not only in the clear, vocalized
regions, but also in more difficult consonant regions due to the
built-in smoothness constraint of the model. How such models
can be used in speech applications, especially for speech recogni-
tion, has been explored in [7]. The key point is that SSS models
can capture the internal dynamics of speech which are completely
missing in the state of the art technology; further developments
and results are the subject of ongoing research.
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