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ABSTRACT

Many time-series in engineering arise from a sparse mixture of in-
dividual components. Sparse coding can be used to decompose
such signals into a set of functions. Most sparse coding algorithms
divide the signal into blocks. The functions learned from these
blocks are, however, not independent of the temporal alignment of
the blocks. We present a fast algorithm for sparse coding that does
not depend on the block location. To reduce the dimensionality
of the problem, a subspace selection step is used during signal de-
composition. Due to this reduction an Iterative Reweighted Least
Squares method can be used for the constrained optimisation. We
demonstrate the algorithm’s abilities by learning functions from a
polyphonic piano recording. The found functions represent indi-
vidual notes and a sparse signal decomposition leads to a transcrip-
tion of the piano signal.

1. INTRODUCTION

Many time-series can be regarded as arising from a sparse linear
mixture of individual processes. It is often desirable to express
such time-series using a sparse mixture of functions which then
reveal the structure of the processes underlying the signal. Ol-
shausen [1] showed that a sparse decomposition of images leads
to functions similar to the receptive fields found in the primate
visual cortex V1 (i.e. being localized, oriented and bandpass).
Lewicki [2] gave a statistical analysis of the problem and devel-
oped a slightly improved algorithm. Abdallah [3] used standard
ICA techniques to learn functions from audio signals. The func-
tions observed were Gabor like atoms with shorter time support for
speech signals and longer time support for musical signals. The
algorithms of Lewicki and Olshausen as well as the ICA method
used by Abdallah work on fixed blocks and are not shift-invariant
and so the learned functions are dependent upon the block posi-
tions. In image and time series analysis this fixed block position
leads to the learning of filtered features and their translations.

The algorithm developed here uses a subspace selection step
to reduce the dimensionality of the problem. This leads to a sig-
nificant increase in speed of Lewicki’s and Olshausen’s algorithms
which then enables us to extend these algorithms to shift-invariant
learning.

2. THEORY

We assume the following linear mixture model:
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xn =
X

i∈I,l∈L

ailsiln + ε = Asn + ε (1)

Here xn is the nth block of the observed time-series. (We
will drop the subscript n from now on.) A is a matrix with the
individual functions ail as its columns, where i ∈ I is the label for
the function of the set I of all functions and l ∈ L is the shift of
the function with L being the set of all possible shifts. sil are the
decomposition coefficients associated with the ith function at the
lth shift. ε is a column vector of i.i.d zero mean noise.

To include the shifts we have to assume that the matrixA not
only contains the individual functions but also all possible shifts.
A therefore contains truncated functions for some shifts. The co-
efficients s then not only select a function but also give its location.
MatrixA is now a matrix specifying |I| linear time-shift-invariant
filters. (Here | · | denotes cardinality.) {sil}l∈L can then be seen as
the input sequences to these filters where x is the noisy observation
of the sum of their outputs.

To estimate the matrixA we can calculate the maximum like-
lihood estimate of:

P (x|A) =

Z
P (x|A, s)P (s) ds (2)

In the shift-invariant model the maximum likelihood estimate has
to be calculated with respect to the individual functions ai by tak-
ing the structure ofA into account.

To find the signal decomposition coefficients s we can calcu-
late the MAP estimate of:

P (̂s|Â,x) (3)

Here Â and ŝ are the current approximations of A and s respec-
tively. In the following we will drop the hat notation for readabil-
ity.

We use Bayes theorem to write (3) as:

P (s|A,x) ∝ P (x|A, s)P (s) (4)

Taking logarithms and inserting the Gaussian distribution into the
right hand side of (4) we can find the MAP estimate of s.

ŝ = arg min
s

λ1

X
m

|εm|2 − log P (s) (5)

εm is the mth value of ε. Here we use ε = x − As and assume
that the P (ε) ∼ N (0, σI) where I is the identity matrix. Additive
constants have also been dropped and the multiplicative constants
in the first term have been collected into λ1.
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It is important to note that we make an independence assump-
tion on the individual coefficients such that P (s) =

Q
P (sil).

To find a sparse signal decomposition a sparse prior distribution
P (sil) has to be used. Different priors have been proposed in the
literature. Probably the most commonly used is the Laplacian dis-
tribution. This would lead to a second term in expression (5) of
λ2

P
il |sil| which is a L1 norm constraint. (We again collect con-

stants this time into λ2.) Using a hierarchical model for the prior
with P (s|τ) ∼ N (0, τ) and a Jeffrey’s hyper prior for the vari-
ance τ leads to an algorithm similar to the IRLS method proposed
here when using a

P
log |sil| constraint. (See [4] for a derivation.)

For a general constraint f(s) we have:

ŝ = arg min
s

X
m

|εm|2 + λf(s) (6)

where we have collected the multiplicative constants into λ. λ is
now a function of the variances of the prior and the likelihood. It
regulates the trade-off between sparseness and noise variance.

As we have to include all possible shifts of each function in
the matrixA the size of the problem is increased by at least a fac-
tor of 2 ∗N − 1 so thatA includes at least one complete function.
(HereN is the length of the functions.) To be able to use standard
optimisation methods a reduction in the size of the problem is re-
quired. We propose an efficient subspace selection method below.

In order to estimateA it can be shown (see [3]) that the likeli-
hood in equation (2) can be written as the expectation of the gradi-
ent of P (x|A, s) with respect to (3). In the shift-invariant model
this gradient is:

∂

∂ail
P (x|A, s)s = Σ(x − As) � {sT

il}l∈L (7)

Here s refers to the current MAP approximation for a given obser-
vation x and the current approximation ofA and � is the convolu-
tion operator.

The updating ofA leads to a weighted averaging of the shifted
signal blocks x. The weights are determined by the value of sil

and are also dependent on the particular implementation of the al-
gorithm. (i.e. in the online learning approach used here the pre-
vious weights decay with each new update.) To be able to learn
the exact function as present in x it is important that the weights
are only non-zero at the exact shift of the function in the signal.
If this is not the case, filtering will occur, which is an averaging
of weighted shifts. This problem is especially significant when the
shift is not taken into account as in the work reported by Olshausen
[1], Lewicki [2] and Abdallah [3] . This might be one of the rea-
sons the functions presented in their work were all bandpass.

3. ALGORITHM

The proposed algorithm can be roughly broken into three parts.

1. Selecting a subspace of functions and shifts for each obser-
vation vector xn.

2. Finding the minimum of (6) in this subspace.

3. Updating the functions in matrixA.

These steps are further explained below.

3.1. Subspace selection

Instead of finding P (s|A,x) in a high dimensional space we re-
duce the problem size by considering only a low dimensional sub-
space. The selection of this subspace can be done by selecting a

space spanned by the vectors ail for which P (sil|A,x) is high.
Note that we here only model the signal x by one function ail.
We also impose a constraint on the possible shifts of a function so
that a function cannot overlap with a shifted version of itself by
more than a fixed amount. This has to be done as functions shifted
only slightly are similar to themselves (i.e. have a high autocorre-
lation for low lag values). The probability P (sil|A,x) is assumed
to be i.i.d. Gaussian. This assumption does not take account of
time dependencies in the residual if just one function is used but is
otherwise justified by the central limit theorem as explained below.

The subspace selection is then implemented by calculating the
correlation of the signal with all basis functions at all shifts which
can be achieved using a fast convolution method. We then iterate
through the following two steps. First we select the basis function
and associated shift with the highest correlation. We then set this
correlation value, as well as correlation values for which shifts are
prohibited by our constraint on function overlap, to zero. In this
way we select a subspace of fixed size in which the optimisation
in (6) becomes feasible.

This procedure can be justified statistically as follows. We can
factor the posterior for s, using the index t instead of the indices i
and l to denote the function and the associated shift.

P (s|A,x) = P (st1 |A,x)P (st2 |st1 ,A,x) . . . (8)

We only work with the MAP estimates for each distribution and
further truncate the right hand side to a few terms. We assume
a uniform prior for P (st) and also presume that P (x|A, st) is
Gaussian. This assumption can be justified by noting that x is
dominated by the mixture of a number of functions when the noise
ε has small variance. If we assume that all functions have a similar
distribution then near Gaussianity follows from the central limit
theorem. We therefore write:

P (st|A,x) ∼ N (atst,Σ) (9)

We use this expression to calculate:

t1 = arg max
t

P (st|A,x) (10)

which is the index t, which maximises xT at. Here we have used
Σ = δI.

We now have to find an expression for P (stm |st1:m−1 ,A,x)
where we use the subscript notation 1 : m to denote all variables
with subscripts between 1 andm. Using Bayes’ rule we find:

P (stm |A,x, st1:m−1) ∝ P (x|A, st1:m)P (stm |st1:m−1) (11)

We can incorporate the constraint on function shifts by using the
prior P (stm |st1:m−1) = P (stm)Ut1:m−1 , where P (stm) is again
a uniform distribution and Ut1:m−1 is a function which is zero for
shifts around l1:m−1 but otherwise has a value of ν normalising the
distribution. Wemake the (not necessarily correct) assumption that
P (x|A, st1:m) = P (x|A, stm). This gives the major reduction
in computational time of the subspace selection method. Note that
for a Matching Pursuit algorithm the distribution P (x|A, st1:m)
is Gaussian with a mean of

P
at1:mst1:m whilst we use a mean of

atmstm .
Selecting the index tm can therefore be done in a similar fash-

ion as above. We again need the correlation of all functions at
those shifts which do not violate the constraint. These correlations
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have been calculated before and do not have to be re-evaluated.
In a Matching Pursuit algorithm we would have to recalculate the
correlation in each step as it is determined with the residual.

3.2. IRLS

In this low dimensional subspace the optimisation problem in (6)
now becomes solvable. We use an Iterative Reweighted Least
Squares (IRLS) approach. (For a constraint of the form

P
log |sil|

this leads to the same algorithm proposed by Figueiredo in [4]. It
is also similar to the FOCUSS algorithm proposed by Rao et. al.
[5] when extended to the noisy mixture case [6].)

We can write (6) as:

ŝ = arg min
s

‖x − As‖2
2 + λ|s|T U−T U−1|s| (12)

Where U−1 is a weighting matrix which converts the right part
of the expression (12) into a standard least squares minimisation
problem. We chooseU−1 so that equation (12) has the same fixed
points as equation (6). U−1 is then a function of the unknown
fixed points which can be approximated in each step.

Solving expression (12) for s we get the iterative process:

ŝ[k+1] = U[k](U[k]AAT U[k] + λ̃[k]I)−1U[k]Ax (13)

AndU[k] is calculated as:

U[k] = diag
˛̨
˛ŝ[k]

i

˛̨
˛
2−p
2

(14)

Where p is the norm of the required solution. For p = 0 this
formulation leads to the

P
log |sil| constraint and not to an L0

norm (see [7]).
Following Figueiredo [8] λ is set to the estimated noise vari-

ance when using the
P

log |sil| constraint which leads to the fol-
lowing expression:

λ̃[k] =
‖x[k] − As[k]‖2

2

m
(15)

wherem is the dimension of the vector x.

3.3. Learning the parameters

Learning the model parameters, i.e. the matrixA, can be achieved
using an approach similar to the gradient algorithm proposed by
Olshausen [1]. For the shift-invariant model the update for a func-
tion ai is:

∆ai = µ(x − As) � {sT
il}l∈L (16)

Assuming that Σ = σI we have included the variance into the
learning rate. It would be possible to estimate the expected vari-
ance, but in the experiments reported below the parameter µ was
kept fixed.

By using the MAP estimate of s some information is however
lost. This is especially critical for those function shifts for which
only part of the function contributes to the current observation x.
For example the one sample at the beginning or end of the observed
block could arise from any of the functions by selecting an appro-
priate coefficient. This would be reflected in the full distribution of
s by an increase in variance. We therefore only include those shifts
for which the entire function contributes to the observation. The

coefficients found for truncated functions are less reliable and are
therefore not considered for the updating of the functions. (Note
that this does not bias the estimate as the data blocks are selected
at random locations.)

We therefore write the update step as:

∆ai = µ(x − As) � {sT
il}l∈L (17)

where L is the set of all shifts for which functions are not trun-
cated.

The functions are normalised after each update to deal with
the scale ambiguity in the model.

4. RESULTS

To test the algorithm we used a recording of L. von Beethoven’s
Sonata for Piano No. 12, in A flat, Scherzo (Allegro molto). The
original stereo recording was summed to mono and resampled at
8000 Hz. The number of possible functions was set to 50, a func-
tion length of 1024 samples was chosen, µ was set to 0.1 and
the maximally allowed amount of overlap of one function with a
shifted version of itself was set to 50%. The IRLS algorithm used
a fixed number of 10 iterations.

After around 100,000 iterations 10 of the functions did not
show any harmonic structure and were of a noisy nature. The other
40 functions had a clear harmonic structure. Of those 40 functions
35 had different fundamental frequencies whilst the other 5 func-
tions had a fundamental frequency equal to at least one other func-
tion. Analysis of the functions further showed that the fundamen-
tal frequencies corresponded to the notes of the western equally
tempered 12 tone scale spanning a range from C#2 to A5 with
some notes missing. Most functions were harmonic in that their
spectrum had a harmonic series of peaks. The amplitude of these
peaks varied with one harmonic often having a much higher am-
plitude than the others. It was notable that the learned functions
did not contain much high frequency energy and there were also
no harmonic series present with very low fundamental frequen-
cies even though such notes were present in the analysed signal.
However, some of the 10 noise like functions were found to have a
high concentration of low frequency energy. A typical selection of
the learned functions is shown in figure (1) with their magnitude
spectrum shown in figure (2).

Calculating the estimate of s using the learned functions makes
a sparse and shift-invariant decomposition of the signal possible.
By assigning notes to the individual functions and by assuming
that each function represents a piano note played for the length
of that function, a transcription of the music was possible. The
coefficients could be converted into MIDI notation using the co-
efficient amplitude as the velocity, the coefficient time location as
the note onset and the length of the basis function as the duration
of each note. A representation of individual MIDI notes over time
is given in figure (3). The melody line is correctly identified and
so are some of the chords. Only a few notes seem to be detected
incorrectly and a number of notes were not found at all. A similar
experiment using a recording of a MIDI controlled acoustic piano
playing L. von Beethoven’s Bagatelle Nr 1 Opus 33 showed 56%
of correctly detected notes, 42% of notes not detected which were
in the original recording and 15% of notes detected which were
not in the original MIDI file.
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Fig. 1. A selection of 5 harmonic functions of the 50 functions
learned.

Fig. 2. The magnitude spectrum of the 5 functions of Fig.1 show-
ing frequencies below 1500Hz. Higher frequency content was neg-
ligible.

5. CONCLUSION

We have developed an algorithm capable of learning statistically
independent functions for a sparse signal representation using a
shift-invariant approach. This was made possible by the use of an
efficient subspace selection step reducing the computational bur-
den of the required optimisation procedure.

We demonstrated the algorithm by learning functions from
polyphonic piano recordings. Most of these functions corresponded
to individual notes and the coefficients could be used to obtain ap-
proximate transcriptions of the score of the music played. The
advantages of the presented approach are that it makes only a few
assumptions on the signal. These are the independence of the in-
dividual coefficients, the fact that functions are not expected to
overlap substantially with shifted versions of themselves (which
introduces a conditional dependency on the location of the func-
tions) and the sparsity of the coefficients. No assumptions have
been made on the functions themselves (apart from the fixed length
of the functions). The ability to learn a sparse and shift-invariant
transform should therefore be applicable to other musical mixtures
as well as to many other engineering problems.

The main restriction of the current implementation is the sub-
space selection step, which restricts the selected subspace to those
functions with a high energy in the signal. Another shortcoming

Fig. 3. An extract of the MIDI note representation obtained from
the signal decomposition. The y axis shows MIDI note numbers
between 45 and 75 and the x axis displays time in seconds.

is the attenuated high frequency content in the learned functions,
which seems to be the result of the used model which only mod-
els shifts of a full sample, whilst the analysed signal is produced
by a process in which functions can occur at arbitrary locations.
These inaccuracies in the model as well as inaccuracies in infer-
ence of exact locations lead to learned functions which are filtered
versions of the underlying features.
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