
A METHOD FOR DIRECTIONALLY-DISJOINT SOURCE SEPARATION IN
CONVOLUTIVE ENVIRONMENT

Shlomo Dubnov

CRCA
University of California

San Diego
sdubnov@ucsd.edu

Joseph Tabrikian, Miki Arnon-Targan

Dept. of ECE
Ben Gurion University of the Negev

Beer Sheva, Israel
{joseph,arnontar@ee.bgu.ac.il}

ABSTRACT

In this paper we propose a new method for source sep-
aration that is based on directionally-disjoint estima-
tion of the transfer functions between microphones and
sources at different frequencies and at multiple times.
The directions are estimated from eigen-vectors of the
microphones correlation matrix. Smoothing and asso-
ciation of transfer function parameters across different
frequencies is achieved by simultaneous Kalman filter-
ing of the noisy amplitude and phase estimates. This
approach allows estimating transfer functions even in
the case where the difference between the sources is in
delay only and it can operate both for wideband and
narrowband sources. Simulation results show superior
performance in comparison to other existing methods.

1. INTRODUCTION

Many audio communication and entertainment appli-
cations deal with acoustic signals that contain combi-
nations of several acoustic sources in a mixture that
overlaps in time and frequency. In recent years there
has been a growing interest in methods that are capable
to separate audio signal from microphone arrays using
Blind Signal Separation (BSS) techniques [1]. In con-
trast to most of the research works in BSS that assume
multiple microphones, in most practical situations the
audio data is limited to stereo recordings. Moreover,
the majority of the potential applications of BSS in the
audio realm consider separation of simultaneous audio
sources in reverberating or echoing environments, such
as a room or inside a vehicle. These applications deal
with convolutive mixtures [2] that often contain long
impulse responses that are difficult to estimate or in-
vert.

In this paper we consider a simpler but still practi-
cal and largely overlooked situation where the mixture
contains a combination of source signals occuring in rel-

atively non-reverberant environment, such as speech or
music recorded with close microphones. The main mix-
ing effect in such a case is the delay effect and possibly
a small combination of delays that can be described
by a convolution with a relatively short impulse re-
sponse. Recently, several works proposed separation
of multiple signals when the signals are disjoint in the
time-frequency(TF), [3]-[4], usually called W-disjoint,
i.e. each source occupies separate regions in Short Time
Fourier Transform (STFT) representation. In such a
case the amplitude and delay estimation of the mix-
ing parameters of each source is possible from the ratio
of the STFT’s of signals from the two microphones.
Moreover, the W-disjoint or approximately W-disjoint
situation allows estimation of more sources than mi-
crophones. Since the disjoint assumption appears to
be too strict for many real-world situations, several
improvements have been reported that allow only an
approximate disjoint situation. The basic idea in such
a case is to use some sort of a detection function that
allows to determine the TF areas where each source
occurs alone and use these areas only for separation.

2. THE MODEL

In blind source separtaion an N -channel sensor sig-
nal, x(t), arises from M unknown scalar source signals
sm(t), linearly mixed together by an unknown N × M
matrix A, corrupted by a zero-mean, white additive
noise v(t).

x(t) = As(t) + v(t)

This model has been extensively investigated in the
literature. In a convolutive environment, the signals
arrive at the array after delays and reflections. We
consider the case where each one of the sources is placed
at a different location thus having a different tempo-
spatial transfer function. Therefore, the signal at the
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nth microphone is given by

xn(t) =
M∑

m=1

L∑

l=1

anmlsm(t−τnml)+vn(t) , n = 1, . . . , N

(1)
where τnml is the delay in the lth path of the speaker
signal m received at microphone n. STFT of the (1)
gives

Xn(t, ω) =
M∑

m=1

Anm(ω)Sm(t, ω)+Vn(t, ω) , n = 1, . . . , N

(2)
where Sm(t, ω) and Vt,n(ω) are the STFT of sm(t) and
vn(t), respectively, and the temporal transfer function
of the mth signal to the sensor n is defined as

Anm(ω) =
L∑

l=1

anmle
−jωτnml (3)

In matrix notation, the model in (2) can be written in
the form:

X(t, ω) = A(ω)S(t, ω) + V(t, ω) (4)

Our goal here is to estimate the signal vector s(t)
from the measurement vector x(t) where the tempo-
spatial transfer function matrix A(ω) is unknown. Our
solution does not require that the number of sensors
be greater or equal than the number of sources, i.e. M
may be greater or equal to N.

3. THE PROPOSED SOURCE
SEPARATION METHOD

The proposed approach seeks for time-frequency cells
in which only one source is present. At these cells it is
possible to estimate the unstructured spatial transfer
function for each frequency. Therefore, the first task
is to identify the single source cells, and calculate the
spatial transfer functions for those cells. In the sec-
ond stage, the estimated spatial transfer functions are
clustered and tracked via a Gaussian Mixture Model
(GMM) and Kalman filter as decsibed in the next Sec-
tion.

The autocorrelation matrix at a given time-frequency
cell is given by

Rx(t, ω) = ARs(t, ω)AH + Rv(t, ω) (5)

where Rx, Rs and Rv are the correlation matrices
of the measuements, source signals and noise, respec-
tively. After averaging over time windows in which the
signal can be considered stationary, we obtain:

Rx(ω) = A(ω)Rs(ω)A(ω)H + Rv(ω) (6)

Here we assume that the noise covariance matrix is
known. Therefore, Eq. (6) can be prewhitened by left
mutipying by R−1/2

v (ω). Since the spatial transfer func-
tion matrix is unknown and unstructured, then with
no loss of generality, we can assume that the matrix
Rv(ω) is diagonal: Rv(ω) = σ2

vIN , ∀ω where IN is an
identity matrix of size N .

For each time-frequency window for which (6) is
estimated, we first test whether there exist only a single
signal. In cases of a single signal, the spatial transfer
function is estimated. For simplicity of notations we
drop the dependence on time-frequency. Let λ1 � · · · �
λN denote the eigenvalues of Rx. In the presence of a
single source, rank(ARsAH) = 1, and therefore, λ1 =
σ2

s + σ2
v and λ2 = λ3 · · · = λN = σ2

v, where σ2
s denotes

the signal power. Therefore, in order to identify the
case of a single source, the following test is performed:

T =
λ1

1
N−1

∑N
n=2 λn

H1

≷
H0

γ . (7)

Under the hypothesis of a single source, T = SNR+1,
while in cases of no source, or more than one source we
obtain T < SNR +1. Alternatively, model order selec-
tion methods, such as MDL or AIC, can be performed
in order to find the number of the sources present in
the time-frequency cell.

If only the mth speaker is present, equation (6) be-
comes

Rx
m(ω) = am(ω)aH

m(ω)σ2
sm

+ σ2
vI (8)

where am(ω) is the mth column of the matrix A(ω).
Therefore, am(ω) is proportional to the eigenvector of
the autocorrelation matrix Rx

m associated with the
maximum eigenvalue: λm

1 = σ2
sm

+ σ2
v.

4. TRACKING AND FREQUENCY
ASSOCIATION ALGORITHM

A common problem in convolutive blind source sepa-
ration is that the mixing parameters estimation is per-
formed separately for every frequency. In order to re-
construct the time signal, the separated channels in
frequency must be combined together in a consistent
manner, i.e. one must provide that different frequency
components correspond to same source1. Since multi-
ple estimates of amplitude ratios are available at each
frequency, we find the means of their clusters by esti-
mating parameters of a GMM. The association of the
mixing parameters across frequencies is performed by
operating separate Kalman filters for every source.

1This problem is also sometimes known as frequency permu-
tation or association problem
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4.1. GMM and Kalman filters

The GMM assumes that the observations, z are dis-
tributed according to the following density function

p(z) =
M∑

m=1

πmN(z|Θm) , (9)

where πm’s are the relative weights of the Gaus-
sian distributions N(·|Θm) and Θm = {µm,Σm} are
the mean and the covariance matrix parameters of the
Gaussians. In our case, the observations, z, are the
estimates of transfer function at every frequency (see
previous section). The parameters of the GMM are
obtained using an EM procedure. The resulting mean
values are the elements of the estimated transfer func-
tion vector [am(ω = k)] where k is the frequency index
are input into a Kalman filter. The state vector s[k] of
the Kalman filter consists of a two dimensional space
of {mean values, derivative (speed)}. The dynamics
across neighboring frequencies (frequency smoothness
constraint) were modeled as

s[k] = Ts[k − 1] + w[k] (10)
µ[k] = Cs[k] + u[k]

with frequency transition matrix T = [1 1 ; 0 1], and
observations vector C = [1 0]. The vectors u,w rep-
resent the observation noise and model errors, respec-
tively.

4.2. The separation algorithm

The various steps of the algorithm can be summarized
as follows:

• Given a two channel recording perform a sepa-
rate STFT analysis for every channel, resulting
in signal model of equation (4).

• Perform an eigenvalue analysis of the cross-channels
correlation matrix at every frequency, as described
in Section 3, equations (6) and (7) and determine
the transfer function.

• At every frequency determine cluster centers of
the set of amplitude ratio measurements using
GMM.

• Perform Kalman tracking of the cluster means
across frequencies for each source to obtain an
estimate of the mixing matrix as a function of
frequency.

• Perform an ”un-mixing” of the sources by multi-
plying the STFT channels at each frequency by
an appropriate inverse matrix.

• Perform an inverse STFT using associated fre-
quencies for each of the sources.

Since the mixing matrix can be determined only up
to a scaling factor, we assume a unit relative magni-
tude for one of the sources and use the amplitude ratios
to determine the mixing parameters of the remaining
source2.

5. EXPERIMENTAL RESULTS

Separation experiments were held for simulated mixing
conditions at different geometrical setups, such as vary-
ing source locations, relative amplitudes of the sources,
angles and amplitudes of the multipath reflections, the
relative distance between the microphones and different
types of sound sources. Figure 1 shows the measured
vs. smoothed spatial transfer functions for a difficult
case of two female speaker sources with equal ampli-
tude mixing conditions. The separation is possible due
to different phase behavior of the signals, which is prop-
erly detected using the Kalman tracking.
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Figure 1: Amplitude and phase of the measured and
smoothed transfer functions.

Figure 2 shows the results of an experiment where
we estimated an improvement in SNR for different rel-
ative positions of the sources with different relative
amplitudes and including multipath reflections. One
of the sources was held constant at angle 0 while the

2This problem of scale invariance may cause a ”coloration”
of the recovered signal and might be one of the possible sources
of error. This problem is common to many convolutional source
separation methods
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other source was shifted relatively to it from −40 to
40 degrees. The relative amplitudes of the sources var-
ied from 0.5 to equal amplitude ratios. The multipath
reflections occurred at constant angles of 60 and −40
degrees with relative amplitudes of few percent of the
original.
For equal amplitudes, we achieve up to 10dB improve-
ment when the sources are 40 degrees apart. The angle
sensitivity disappears when sufficient amplitude differ-
ence exists between the sources. For amplitude ratio
0.5 (i.e. each microphone receives its main source at
amplitude 1 and the interfering source at amplitude
0.5) we achieve between 20 and 30 dB improvement.
One should note that the above results contain weak
multipath components. Even better improvement (50
dB or more) can be achieved for cases when no mul-
tipath is present. Another difficulty with multipath is
that it might cause a failure in tracking in the direction
of the multipath.
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Figure 2: Improvement in snr for different relative po-
sitions of the sources and different relative amplitudes.
See text for more details.

Figure 3 shows the amplitude of a spatial trans-
fer function of the inverse mixing matrix for each fre-
quency, for the case of two sources, one around the
center and the other source around 60 degrees, with no
multipath. One can see that the inverse matrix puts
a notch at the direction of every source, separately for
each microphone.
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Figure 3: Spatial pattern obtained by of the inverse
of the mixing matrix for each frequency in case of two
sources at 0◦ and 60◦.
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