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ABSTRACT

Practical gradient-basedadaptive algorithms for multichannel blind
deconvolution and convolutive blind source separation typically
employ FIR filters for the separation system. Inadequate use of
signal truncation within these algorithms can introduce steady-
state biases into their converged solutions that lead to degraded
separation and deconvolution performances. In this paper, we de-
rive a natural gradient multichannel blind deconvolutionand source
separation algorithm that mitigates these effects for estimating caus-
al FIR solutions to these tasks. Numerical experiments verify the
robust convergence performance of the new method both in mul-
tichannel blind deconvolution tasks for i.i.d. sources and in con-
volutive BSS tasks for acoustic sources, even for extremely-short
separation filters.

1. INTRODUCTION

Blind source separation (BSS) is a field that has received much re-
cent attention in several research fields, including acoustics, bioin-
formatics, communications, control, data mining, and signal pro-
cessing. Most formulations to the BSS task assume that a set of
sensor signals contain linear mixtures of several source signals of
interest. The goal is to process the sensor signals to extract ver-
sions of each of the source signals without any crosstalk and with-
out precise knowledgeof the source signals, the mixing conditions,
or any training information. This paper focuses on the convolutive
BSS task, in which a vector sequence���� � �� ���� � � � �������

of � sources ������� is mixed by a causal time-dispersive multi-
channel system as

���� �
��

���

����� � ��� (1)

where ���� � ������ � � � ������� contains the � sensor signals
and �� is the �� � �� coefficient mixing matrix at lag � with
elements ������, � � ��� �� � �. In practice, the separation
system has the multichannel finite-impulse-response (FIR) form
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��

���

�������� � ��� (2)

where �����, � � � � 	 are the �	 � �� matrix coefficients
of size �� ��� for the separation system at time �. The sepa-
ration system is made time-varying with the assumption that the
������� can be iteratively adapted to achieve the separation task.

In [1, 2], natural gradient multichannel blind deconvolution
and source separation procedures are derived that have a number
of useful features: (1) They are based on a soundminimum mutual

information criterion [3]; (2) They only assume that the sources
have non-Gaussian amplitude statistics; (3) They have a simple
FIR-based multiply/add computational structure that is amenable
to a sample-by-sample or a block frequency-domain implementa-
tion; and (4) They appear to provide some separating capability for
real-world mixtures such as acoustic recordings of speech [2, 4].
The time-domain coefficient updates are [1]

����� �� � ����� � 
������� ������	���� ������(3)
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�
�
��������� � ��� (4)

���� � ������ � � � ������� , and ���� is a nonlinear function
that is related to the amplitude statistics of the source signal � ����
extracted at the �th output. Several researchers have used (2)–(4) as
the basis for modified approaches that overcome some of the lim-
itations of the original procedures for acoustic source separation,
such as the spectral flattening of the extracted sources [5]–[9].

We have identified a performance limitation of the algorithm
in (2)–(4), as demonstrated in Figs. 1 and 2. Complete details of
this example are provided in Section 4. Fig. 1 shows the impulse
responses ������ for a two-loudspeaker, two-microphone labora-
tory measurement setup at a sampling rate of 8kHz. Fig. 2 shows
the impulse responses �� ������� of the combined system

����� �
��

���

��������� (5)

obtained after applying (2)–(4) to i.i.d. binary-����-distributed
sources that are mixed by an acoustic channel. Notice that the
edges of the impulse responses of the various sub-filters within
the combined system exhibit “spikes” at either end of their active
temporal windows. These spikes create pre- and post-echoes that
harm the overall separation performance of the scheme. Although
illustrated using binary i.i.d. sources, these artifacts appear with
most signal sets after an extended number of algorithm iterations,
and they cause a significant decrease in overall separation perfor-
mance. Several researchers have developed extensions of these
algorithms in an attempt to mitigate these effects, which gener-
ally increases the complexity of the approach [5, 6, 8]. Clearly, a
structural change to the algorithm is required to improve its steady-
state separation and deconvolution performance for a wider class
of mixing systems, including those that are non-minimum phase
or that have non-finite-length inverses.

In this paper, we study the effect that signal windowing and
filter truncation play in the natural gradient method for blind de-
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Fig. 1: Impulse responses for the acoustic channel.

convolution and source separation. We show that windowing ap-
proximations used in the derivation of (2)–(4) result in additional
input signal terms within the natural gradient updates that are not
part of the standard gradient. Simulation evidence suggests that
these terms cause a bias in the steady-state solution obtained by
the scheme. We then introduce a modified natural gradient method
for multichannel blind deconvolution that does not include these
additional terms. Simulations show that the proposed algorithm
performs multichannel blind deconvolution on i.i.d. sources with-
out pre- or post-echo in the combined impulse responses. Applica-
tion to acoustical mixtures shows that much smaller filter lengths
can often be chosen for the new method as compared to the origi-
nal algorithm without sacrificing performance.

2. SIGNAL WINDOWING IN EXISTING NATURAL
GRADIENT ALGORITHMS

In this section, we compare the structure of the coefficient updates
in (2)–(4) with the gradient of the cost function on which this pro-
cedure is based. This cost function is

� �������

� �

��

���

����� ������������ �

���

�
��� ��	
�������

�����(6)

where ����� �
��

���������
�� is the �-transform of �����,

���� denotes statistical expectation, and �� ���� is a model of the
p.d.f. of the 	th source to be extracted. It can be shown that (6) is,
up to a constant independent of�����, proportional to the mutual
information of the output signal sequences �� ����� when ������ is
the p.d.f. of the 	th extracted source sequence [3]. Minimizing
this measure results in a set of sequences � ���� that are most in-
dependent from sample to sample and from channel to channel.
When ���� fits the model in (1) and each 
 ���� is independent of
every 
���� for 	 �� � and any � and �, minimizing (6) results in the
multichannel deconvolution of the signal mixture.

Standard gradient minimization of (6) takes on the form

���� � �� � ������ �
� �������

�����
� (7)

where � is the algorithm step size. For the moment, we shall focus
on the first term within the cost function in (6) whose gradient with
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Fig. 2: Combined system responses for the algorithm in (2)-(4).

respect����� can be shown to be
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����� ������������� ����������� �� � ����(8)

where ����� � � ��� �������� in ����. Thus, the coefficient
updates for the standard gradient method in (7) depend only on
the most-recent output signal vector ���� and the �� � �� most-
recent input signal vectors ����� ���, � � � � �. If an �-sample
delayed coefficient update is used instead, the coefficient updates
depend on signal terms of the form



���� � ��
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����� ��������� ����

�
� ������� � ����� �� � �� ���� (9)

in which only ���� � ���, � � � � �� appear in the updates.
The natural gradient procedure in (2)–(4) is a filtered-gradient

stochastic update rule in which an �-sample delay is introduced
within the signal-dependentupdate terms of (8) to maintain causal-
ity. Substituting the expressions for ���� in (2) and ���� in (4)
into the right-hand side of (3), we obtain

���� � �� � �� � �������

� ������� ���
��
���

��
���

���
����� � ��

	����� � � ����� � �� � � ���� (10)

The second update term on the right-hand side of (10) includes
input signal samples ����� � ��� for � � � � �. These terms
fall outside the range of lags � � � � �� in the delayed gradient
calculation in (9). Hence, the update in (3) employs input signal
samples that are not part of the gradient of the cost function for the
chosen FIR filter structure.

How these additional terms affect the overall convergence per-
formance of the system depends strongly on the source and mix-
ture characteristics. In the unlikely situation where a finite-length
equalizer is adequate to both separate and deconvolve the source
mixtures (e.g., the mixing system is multichannel autoregressive of
order � � �) and the sources are temporally-independent, the ad-
ditional terms within the coefficient updates are likely to improve
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convergence performance, because they provide additional signal-
dependent constraints that fit the truncated separation model, such
that������������� ������ � � outside the range� � � � ��.
In more-common situations where a finite-length equalizer cannot
separate and deconvolve the sources, or in situations where the
sources are temporally-dependent such as in speech separation, the
additional terms are likely to harm convergence performance be-
cause they are not consistent with the truncated separation model,
i.e. ������������� ������ �� � outside the range� � � � ��.

3. CAUSAL NATURAL GRADIENT ALGORITHM FOR
MULTICHANNEL SYSTEMS

In this section, we develop a procedure that largely mitigates the
detrimental coefficient bias observed in Fig. 2. The modification
is straightforward: Remove the terms in (3) that do not depend on
���� � ���� � � � � ��. If we also assume that adaptation is
slow such that���� � � � �� and��

������ �� can be replaced
by���� � �� and��

������ ��, respectively, we obtain

���� � �� � �� � �������� ������ � ���

�

����

���

min�����������

��������������

���
������ ��

����� � ����� � �� � � ���� (11)

To see the inherent structure of this new algorithm, define

���� � ��� ��� �� ��� �� � � � �� �� � ���� (12)

���� � ����������� � � � ������� (13)

Then, we can represent

���� �
��

���

�������� � �� � ��������� (14)

Define the	-element vector ����� and �	�	�matrix����� as

����� �
��

���

���������� � 
� (15)

����� �

���
��

����
���

�
�
� ���������� if � � � � �

��
����� if �� � � � ��

(16)

Define the �	������	������ matrix���� and the	�����-
element vector ���� as

���� �

�
����

����� ����� � � � �����
������ ����� �������

...
...

������ � � � � � � �����

�
			
 (17)

���� � ���� ��� � � � �
�
�����

� � ��������� (18)

respectively. Then, it can be shown that (11) is equivalent to

������ � ���� � ������� ����������� �������(19)

where ������� � ���������� � � � ����������� . Moreover, since
���� � ���, � � �  � no longer appear in the updates, we can
remove the signal delay introduced into (19) to obtain

���� �� � ���� � ������� ��������� ����� (20)
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Fig. 3: Combined system response for the proposed scheme.

The calculation of ���� in (18) involves 	��� � ��� multi-
ply/adds, making it prohibitive for large filter lengths. As such, we
propose a simplified approach to approximating the value of ����.
This approach make use of the block Toeplitz structure of���� to
recursively update the vector

����� � ����� ��� ���� ��� � � � ���������� ���������� (21)

whose last	����� entries contained in the vector ����� are equal
to ���� if ���� does not change. The recursive update for the
vector elements of ����� is given by

������ � �������� (22)

������ �
����
���
��

�������� if � � ����������� ���
���������� if � � � � ����������� ������������

���
��������������������� if ��������

(23)

Each �������, � � � � � is only updated at the time instants
� � ��� � ��, where � is an integer. The coefficient updates
become

���� �� � ���� � ������� ���������� ����� (24)

Equations (14) and (22)—(24) define the proposed multichan-
nel blind deconvolution and source separation procedure employ-
ing causal filters. The complexity of the algorithm is approxi-
mately 6.5 multiply/adds per adaptive filter coefficient per time
instant including the periodic calculation of �� �����, making it
approximately 63% more complex than (2)–(4).

4. NUMERICAL SIMULATIONS

We now explore the behavior of the proposed procedure via nu-
merical simulations. All of the examples in this section use the
same two-input, two-output impulse response in Fig. 1. This im-
pulse response was generated from an acoustic laboratory setup
consisting of a pair of omnidirectional lapel microphones spaced
4cm apart and mounted in a V-configuration approximately 1.5m
from the floor in the center of a 4.45m-by-3.55m-by-2.50m room.
The reverberation time of this room is 130ms. A pair of loudspeak-
ers located 1.2m away from the microphones at �	� degrees and
�
� degrees from the on-axis direction were used as the acoustic
sources. Bandlimited white noise played through these loudspeak-
ers was then used to characterize the individual impulse responses
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Fig. 4: Per-channel ISICIs for the two algorithms.

of the loudspeaker-to-microphone acoustic paths using linear esti-
mation techniques. We then generated the source signal mixtures
by filtering recorded signals using these impulse responses digi-
tally. While not exactly identical to real-world acoustic mixtures,
these signals allow us to accurately observe and characterize the
impulse response distortions due to FIR filter and signal trunca-
tion through the combined system impulse responses. These dis-
tortions are generally unobservablewhen looking at the separation
system coefficients alone. All signals are sampled at 8kHz.

Our first experiment tests the ability of the algorithms to both
separate and deconvolvebinary–���� i.i.d. sourcemixtures. Both
the original natural gradient procedure in (3) and the proposed
procedure in (24) were applied to this data, where � � ���,
����� � ����Æ�����, ����� � ��, and � � ������. Shown
in Fig. 2 is the combined impulse responses � ���� delayed by
175 samples at iteration � � ������ for the original procedure.
As noted in the introduction, the “spikes” present near � � ���
and � � 	�� are troublesome and prevent equalization. Shown
in Fig. 3 are the combined impulse responses for the proposed
method at iteration � � ������ on the same data. As can be
seen, the separation and deconvolution performance is nearly per-
fect, with ideal delta-function responses in ������ and ������ and
nearly-zero responses in ������ and ������, respectively. Plots
of the separation system impulse responses � ���� for the two
schemes show a slight difference in the coefficient values, although
it is not clear which impulse response set yields the better result.

Shown in Fig. 4 are the per-channel combined inter-symbol
and inter-channel interferences (ISICIs), computed as

�	�
������

�
���
���

���������
���������� ��
������

��������

�
�� (25)

for � � �� �� respectively, during their respective convergence
periods. As can be seen, the original natural gradient approach
fails to accurately deconvolve the acoustic channel, whereas the
proposed method is quite effective at reducing the ISICI.

We now turn to examples involving acoustic sources. In this
case, we replace the two random uniform sources with two 7-
second isolated recordings of a single male speaker from a ra-
dio newscast. These signals were repeated six times before be-
ing filtered by the acoustic channel to create a 300000-sample pair
of signal mixtures. Both the original and proposed algorithms
were applied to these signals, where � ���� � ���Æ����� and

Table 1: Signal-to-Interference Ratios for Speech Separation
Original Proposed

Channel � � ��� � � �� � � ��� � � �� � � ��

1 0.7 dB 2.2 dB 8.6dB 13.9dB 13.3dB
2 -1.0 dB 3.1 dB 11.0dB 13.5dB 12.8dB

����� � sgn���. The initial step size values were chosen to be
� � ������� and � � ������� for the original and proposed
methods, respectively, and these values were lowered to ��������
and ��������, respectively, at iteration � � ������.

Table 1 lists the signal-to-interference ratios (SIRs) obtained
by the original and proposed methods for various filter lengths �.
The data indicate that the original natural gradient algorithm fails
to provide any degree of separation with these parameter choices,
and performance is marginally better for shorter filters. Large
“spikes” can be seen in the �� ���� sequences (not shown). In con-
trast, the proposed method provides reasonable performances for
filter lengths as small as � � �	 taps. Such short-filter systems
can only be used when the room reverberation time is short and
the microphone array has closely-spaced sensors. These results
are extremely promising for practical acoustic source separation
in offices and other small-room environments.

5. CONCLUSIONS

In this paper, we have demonstrated through argument and sim-
ulation that an existing natural gradient multichannel blind de-
convolution and source separation procedure [1] can achieve a bi-
ased result when the channel to be inverted is not minimum phase
and/or the separation filter length is too short. We then propose a
new natural gradient procedure that avoids these difficulties. The
complexity of the new algorithm, while somewhat greater than the
original approach, is still proportional to the number of parameters
in the separation system, and it uses only multiplies and adds in
its operation. We have demonstrated its capabilities both in mul-
tichannel blind deconvolution tasks involving synthetic signals as
well as convolutive BSS tasks involving speech signals. Moreover,
the algorithm functions in a reasonable manner even when the fil-
ter lengths chosen are much shorter than would be required for an
accurate channel inverse.
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