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ABSTRACT

In this paper, we present a study of the statistical behavior of the
dissimilarity measure Ds, proposed in [1] and which results from
a machine learning-based quantile estimation approach, namely:
single-class support vector machine. This dissimilarity measure
possesses the interesting property of being asymptotically equiva-
lent to the Fisher ratio when dealing with radial Gaussian probabil-
ity density functions. More generally, it can be efficiently applied
to non-connected quantiles, and to noisy data sets, as outliers are
taken into account by the SVM. A generalisation of Ds is then
proposed, which results in the design of a more general class of
dissimilarity measures, also defined in feature space and with the
same properties.

1. INTRODUCTION

Many Signal Processing applications require the compari-
son of data sets, via a dissimilarity measure. In [1], we pre-
sented an abrupt change detection algorithm based on a dis-
similarity measure Ds(-, -). Other typical examples can be
found in Independent Component Analysis (contrast func-
tions) and in Pattern Recognition. In this paper, we show
that the dissimilarity measure introduced in [1] has good
properties, and that it can be generalised to a wide class of
measures in the so-called feature space.

More precisely, let 1 = {x],..., 27"} (resp. T3 =
{x}, ..., 2]"*}) be a set of vectors in a space X i.i.d. sam-
pled according to an unknown probability density function

(pdf) py (resp. p2). We want a dissimilarity measure D(x 1, )

to be small if the vectors in 1 are located in the same part
of the space as the vectors in x5 and of course, D(x1, x2)
must be large in any other case. This enables the following
test, typically implemented in decision algorithms:

{ HO : D((El,mg)
H1 : D((El,mg)

< n (Sets are similar)
> 1 (Sets are dissimilar)

ey

where 7 is a threshold that tunes the sensibility/robustness
compromise. In, e.g., detection problems, 7 tunes the false
alarm/miss alarm ratio.

Under the assumption that p; and p, are unknown, if
one wants to build D(x1,x2) upon statistics based on the
sole knowledge of the data sets 1 and x», possible ap-
proaches include the comparison of statistics directly com-
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puted on the data, of inferred distributions, of empirical den-
sity estimates... The approach in [1] was slightly different,
as we had defined a dissimilarity measure Ds(-, ) built on
estimated quantiles of p; and py. Roughly, a quantile Ry L
for the pdf p; is a region of the space X" that contains most
of p; probability mass. In [1], quantile estimation was per-
formed via a single class v-support vector machine (SVM),
and D (-, -) was defined as a Fisher-like ratio aimed at com-
paring the estimated quantiles R 7 , and Rﬁi of pdfs p; and
p2. This is recalled in Section 2.

Though Ds(+,-) is defined as a Fisher-like ratio in fea-
ture space, we have no guaranty that it actually behaves like
the true Fisher ratio when p; and ps are Gaussian pdfs, i.e.
when the Fisher ratio is most relevant. Assume p; and p»
are Gaussian with means p; and p,, and with covariance
matrices Y1 and Y. The Fisher ratio is [2]

Dr(p1,p2) = (1 — N2)T(El + Z32)_1(111 — ) (2)

In the case where 31 = ¥y £ %, Dp (p1,p2) is a distance
between p; and po, as it equals the Kullback-Leibler diver-
gence, and also the Mahalanobis distance denoted ||pt, —
Wol|s,x (see, e.g., [3]). In Section 3, we show that the dis-
similarity measure defined in [1] actually behaves asymp-
totically (as m1,mo — o0) like the Fisher ratio (or equiva-
lently, the Kullback-Leibler divergence) in the case of Gaus-
sian distributions with identical covariance matrices. More-
over, Ds(+,) has a relevant behavior even when D p(-,-)
does not.

The results obtained in Section 3 are a starting point to
build a large class of dissimilarity measures also defined in
feature space, which all possess the above asymptotic prop-
erty. These dissimilarity measures are built in Section 4,
using so-called metric preserving functions. Section 5 is
dedicated to the comparison of the Fisher ratio to some dis-
similarity measures designed in Section 4. Finally, conclu-
sion and future research directions are proposed in 6.

2. A FIRST DISSIMILARITY MEASURE

For the sake of brevity, we do not recall here single-class v-
SVM. Sufficient elements can be found in, e.g., [4]. We em-
ploy the following usual notations: k(-, -) is a kernel induc-
ing a mapping ¢(-) from input space X to feature space H,
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and the aj-, t=1,...,mj,j = 1,2, are the weights yielded
by the SVM. The inner product in H between two mapped
training vectors < ¢(z;), ¢(z;) >y equals k(z;,z;). In
the following, we assume that k(-, -) takes values between 0
and 1, and is such that Vo € X, k(z,z) = 1L,

Assume that two single-class classifiers are trained in-
dependently on the sets 1 and x», yielding the regions
RX , and R;Z or, equivalently in feature space H, the hyper-
planes W; and W parametered by (w1, p1) and (wa, p2).
In H, the vectors w; and w» define a 2-dimensional plane,
denoted P, that intersects the hypersphere S along a circle
with center O and radius 1, as depicted in Fig. 1. Actually,
in the pathological case where w; and wo are collinear,
there is an infinity of planes P, and one can select any of
them. We recall that w (resp. w2) equals > ;" afd(z})

(resp. Y1 abo(xh)).

<
P radius= 1

Fig. 1. The SV single-class classifiers yield two hyperplanes
Wi (w1, p1) and Wa(wa, p2). The circle represented corre-
sponds to the intersection of the plane P (uniquely defined
by w; and ws) and the hypersphere S. The intersection of
the line (0, w1) (resp. (0, w>) ) with S yields ¢; (resp. c2),
and the intersection of the hyperplane W/, (resp. W,) with
S in the plane P yields two points, any of which is denoted

p1 (resp. pa2).

In feature space, the hyperplane W; (resp. /V2) bounds
the segment of S where all the mapped inliers of x| (resp.
) lie. Mapped training vectors located right on the bound-
ary W, (resp. Ws) are called Margin support vectors, and
are denoted x)*¥ (resp. x%°"). In [1], we proposed the
following intra-regions/inter-regions ratio inspired by the
Fisher ratio [2]:

darc(clacz)
darc (Cla P1) + darc(c2a p2)

3

Ds(xy,z2) =

where darc(a,b) = ab denotes the arc distance between
two vectors a and b on S. Considering «; only, we see that
the arc distance darc(c1,p1) is a measure of the spread of
samples of the mapped training set ¢(a1) in feature space.

I'These are mild conditions over kernels, which are verified, e.g., by the

o2
Gaussian kernel k(z,y) = exp (7%) , with o > 0.

The more these samples are spread, the higher the distance
darc(c1, P1), and the smaller the margin py /||w||. The dis-
similarity measure Dg(-,-) thus has the expected behavior
in feature space, namely it is high for well separated sets,
and it is small for strongly overlapping sets. The patholog-
ical case where w and ws are collinear and where o and
x- have zero spread is not considered, as it can easily be
dealt with by adding some small ¢ > 0 to Ds(-, -) denomi-
nator.

As the mapping ¢(-) is generally unknown, the compu-
tation of Dg(-, ), which is defined in feature space, is pos-
sible only if we can express it as a function of the kernel
k(-,-) applied to vectors of the input space X’. In [1], we
had shown that the arc distance darc(a, b) can be computed
in terms of the kernel since

darc(a, b) = arccos ( < a,b >y ) = arccos (1—%||a—b||$_[)

“)
Note that the arccos function is defined properly because
the vectors we consider are all located in the same (positive)
orthant of S. The inner product in Eq. (4) can be evaluated
in terms of the kernel &(+, -) even though c¢; and ¢ are not
in ¢(X) since ¢ = wy/||w1]||y and co = Wy /||wa||:

T
(8 K12 (6 5)
darc(€1,¢2) = arccos = ! = (5)
\/alKllal \/Oéngzaz
where a1 (resp. a2) is the column vector which entries are
the af,i = 1,...,mq (resp. ab, i = 1,...,m2). The ker-

nel matrix Ky, (u,v) € {1,2} x {1,2} has entries at row
#i and column #; given by k(z?,,z?) where we recall that

u’r v

x! is training vector #i in the set x,. Similar calculation

can be applied to ¢{p; and c5ps, and yields:

dare(c1,P1) = arccos ——PL ©)

\/ a{Ku (6 5]
Note that Ds (-, -) can be equivalently defined by replacing
p1 in Eq. (3) by any Margin SV (denoted x}*" = ¢(x}*"))
which might not be in P. The arc distance darc(c1,p1)
equals darc(c1, %Y%), because p; and x}*" both are located
on the intersection of S with YW1, and have the same arc dis-

tance to c;. The same reasoning also holds for ps and x5*".

3. CONNECTION WITH Dp IN INPUT SPACE

In this section, we show that the dissimilarity measure Ds(+, -)
defined in Section 2 is asymptotically equivalent to the Fisher
ratio Dp(+,-) in the case of radial Gaussian distributions.
The asymptotic behavior of ¢; (resp. ¢2) is described by
the following theorem:
Theorem 1. Let x be a set of m vectors i.i.d. sampled from a
Gaussian pdf p(-) with mean p and covariance matrix o 1.
Let k(-,-) be a kernel such that

k(z,z") = q(|lv —2'||f ) foral (z,2') € X x X (7)
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Then, with probability one, for m — o0, the center c yielded
by the v-one class SVM converges to p = ¢(1).

(The proof for Theorem 1 is not exposed here for brevity
reasons). If we assume that the underlying pdfs p; and p2
are Gaussian with means y; and p and covariance matrices
0?1 and 031, then

darc (1, Hs)
Ds(x1,x —
s(@1,22) mi,ma—00 dare (g, X}™) + darc (o, X5*)

(3)
or, equivalently Ds(x1, x2) converges to:
gl — p2llf x) ©)
9(llm = 2V x) + 9 (lln2 — 251 x)

where g(u) = arccos (q(u)). As ||pi—a}™[[} » is asymp-

totically proportional to o2 (i = 1, 2), we finally have

— 15|12

Ds(ar, ) g(llm = 2|7 2) (10)

my,ma—00 g(ﬂdf) + g(ﬁa'%)

where § > 0 is a constant. We note that g(-) is a monotoni-
cally increasing function with g(0) = 0 (in fact, it is shown
in Section 4 that (z,2') — g(||z — a:’||%X) is a metric in
X). This result is quite important because it shows that,
for sets sampled according to radial Gaussian distributions,
Ds(-,-) behaves like the standard Fisher ratio Dp(-,-) in
input space.

Remark 2. Generalisation. This result can be generalised
to Gaussian distributions with proportional covariance ma-
trices Uf Y (1 = 1,2) when using the Mahalanobis Gaussian
kernel k(z,z') = q(||z — 37’||22X) The norm in Eq. (10)
is then Mahalanobis || - ||s x instead of the Euclidean norm
I flrx-

As it is defined in feature space where the shape of the
mapped quantile estimate is always a segment of the hyper-
sphere S, Ds(+, -) is well-suited to situations where p; and
p» are not Gaussian, and in particular when R ¥ and R,
have complicated, possibly non-connected, shapes. Simu-
lations on toy examples in Section 5 show that Ds (-, -) has
the expected behavior, namely it is small for similar train-
ing sets 1 and x2, and large when the training sets do not
occupy the same region in &X'. This illustrates the interest of
Ds(+,+) in general situations.

4. MORE DISSIMILARITY MEASURES

The dissimilarity measure Ds(-, -), as defined in Section 2,
is based on the arc distance in feature space. A key ques-
tion is: is it possible to define other dissimilarity measures
D¢ (-, -) in feature space, with the same interesting proper-
ties, but based on other distances in H?

Building on the results of the previous section, Proposi-
tion 3 describes how it is possible to generalise Ds(+,-) to a
large class of dissimilarity measures in feature space:

Df(:cla 1122) =

Proposition 3. Let k(-, -) be a translation invariant kernel,
ie, k(z,z') = q(|lzr — 2'||z,x). Consider a function
f:R = Rsuchthat: 1] f(< a,b >4) is a metric for all
a, b in the positive orthant of S, 2/ f(q(||lz — 2'||x)) is a
metric for all (x,z') in X. Then the dissimilarity measure

f(<ei,ea >y)
f(<er,p1 >u) + f(<c2,p2 >u)

(1)

behaves asymptotically like the Fisher ratio in the case of
Gaussian distributions with covariance matrices proportional
to X.

The arccos function used in the definition of Dg(,-) ver-
ifies these two conditions, as f(< -+ >%) = darc(:,")
and the function g(u) = arccos (g(u)) is metric preserv-
ing. We now recall definition and sufficient conditions about
metric preserving functions, before using them to build func-
tions f(-) fitting to the conditions of Proposition 3.

Definition 4. A function f : [0,00) — [0, 00) is metric-
preserving if for all metric spaces (A, d), f(d(-,-)) is a met-
ric.

The following proposition holds (see, e.g., [5]):

Proposition 5. If f : [0;00) — [0;00) is concave, and
such that f~1(0) = {0}, then f(-) is metric-preserving.

Weaker conditions do exist, but the sufficient condition given
in Proposition 5 is particularly easy to check. If one chooses
f(-) suchthatu ~— f(1—1/2u?) andu — f(q(u)) both are
metric-preserving, then the required conditions of Proposi-
tion 3 are fulfilled. An example is : f(u) = (1 — u™)*/",
which is well defined as the points we consider in feature
space are all located in the positive orthant of S, or f(u) =
(1 —u)t/m,

Yet, the property of metric-preservingness is stronger
than what is actually needed: for example, the function u —
arccos(1 — u2/2) is not metric preserving, but arccos(1 —
|la—b]|3,/2) is still a distance between a and b (it is the arc
distance dyrc(a, b) on the hypersphere S). This can easily
be explained as in Proposition 3, condition 1 (resp. 2) is to
be verified for the induced metric ||-—-|| % (resp. || —-|| x),
and need not be true for any metric in H (resp. X').

In fact, once a function satisfying Proposition 3 is found
(possibly a non-metric preserving function), it is possible
to build other valid functions f(-) by composition with any
metric-preserving functions, such as, e.g., g1 (1) = au with
a > 0, g2(u) = logy(l + u), gs(u) = 115, 94(u) =
maz(u,c) with ¢ > 0, gs(u) = u? with 0 < d < 1.
The corresponding dissimilarity measure D¢(-,-) defined
by Eq. (11) has the same asymptotic behavior as Ds(-,-);
it also shares Dg (-, -) relevant behavior when the quantiles
to estimate have complicated shapes.
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5. SIMULATION RESULTS

In this section, we compare on toy examples the behavior
of some dissimilarity measures D (-, -) built using sections
2 and 4 to the Fisher ratio. We select three dissimilarity
measures Dy,, ¢ = 1,...,4, defined using Eq. (11) and
fi(u) = arccos(u), fo(u) = (1 —u?)'/? and f3(u) =
13- The kernel we use is the Gaussian kernel k(z,y) =
exp (—||lz — y||%/207) witho = 2.5.

The first toy data set is composed of two 2-D Gaussian
populations & and x5 (with variance I), and with mean
p1(t) = p1 = 0and pa(t) = py + 0.25t, where ¢ denotes
the time instant. Both sets size is 30. We see in Fig. 2 that all
the dissimilarity measures have the same behavior: they are
small when & and x» are very similar, and large when x
and x» occupy the same spatial location. In the second toy

Evolution of the training sets &, and @2 in input space

o

ller — pollx =2

0 @

[lp1 — p2llx =0 [lp1 — pellx = 4.5

Evolution of some dissimilarity measures between 21 and a2
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Dy, with fa(u) = (1 — u?)1/? Dy with f3(u) = 135

Fig. 2. When the data sets are drawn from Gaussian distri-
butions, the Fisher ratio and dissimilarity measures (plotted
as functions of the distance between p; and p») which are
built according to Section 4 all have a relevant behavior.

data set, 1 again is sampled from a Gaussian distribution
with fixed mean j1 (t) = p1 and variance o2 = I; the set
x- is sampled from a mixture of two Gaussian distributions
with mean o (t) = py —0.25¢ and po' () = pq +0.25¢, and
with variance 02/2. The size of 1 and x, is 30. In Fig. 3,
all the dissimilarity measures built according to the method
proposed in Section 4 have the expected behavior (they in-

crease as the training sets are better separated), whereas the
Fisher ratio decreases.

Evolution of the training sets @1 and @2 in input space
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Evolution of some dissimilarity measures between 1 and @2
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Dy, with f2(u) = (1 — u?)!/2 Dy with fa(u) = 3

Fig. 3. Though p11 = ps, the sets &; and x> do not occupy
the same region in &X’. The dissimilarity measures built ac-
cording to Section 4 still have a relevant behavior, but the
Fisher ratio does not.

6. CONCLUSION

In this paper, we presented the statistical study of the dis-
similarity measure Ds (-, -) introduced in [1]; in particular,
we showed that it generalised the Fisher ratio, and extended
its range. It then helped to define a large class of dissimi-
larity measures Dy (-, -). Future direction research include
the study of further connections with classic dissimilarity
measures met in Signal Processing.

7. REFERENCES

[1] Desobry, F. and Davy, M., “Support Vector-Based online De-
tection of Abrupt Changes,” in Proc. IEEE ICASSP, Hong
Kong, China, Apr. 2003.

[2] R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis, John Wiley, New York, 1973.

[3] Michele Basseville, “Distance measures for signal processing
and pattern recognition,” Signal Processing, vol. 18, no. 4, pp.
349-369, Dec. 1989.

[4] A. Smola and B. Scholkopf, Learning with Kernels, MIT
press, 2002.

[5] P. Corazza, “Introduction to Metric-Preserving Functions,”
Am. Math. Month., vol. 104, no. 4, pp. 309-323, Apr. 1999.

V-476

I 2



