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ABSTRACT

In this paper, we present a study of the statistical behavior of the
dissimilarity measure �� , proposed in [1] and which results from
a machine learning-based quantile estimation approach, namely:
single-class support vector machine. This dissimilarity measure
possesses the interesting property of being asymptotically equiva-
lent to the Fisher ratio when dealing with radial Gaussian probabil-
ity density functions. More generally, it can be efficiently applied
to non-connected quantiles, and to noisy data sets, as outliers are
taken into account by the SVM. A generalisation of �� is then
proposed, which results in the design of a more general class of
dissimilarity measures, also defined in feature space and with the
same properties.

1. INTRODUCTION

Many Signal Processing applications require the compari-
son of data sets, via a dissimilarity measure. In [1], we pre-
sented an abrupt change detection algorithm based on a dis-
similarity measure ����� ��. Other typical examples can be
found in Independent Component Analysis (contrast func-
tions) and in Pattern Recognition. In this paper, we show
that the dissimilarity measure introduced in [1] has good
properties, and that it can be generalised to a wide class of
measures in the so-called feature space.

More precisely, let �� � ���
�
� � � � � ���

�
� (resp. �� �

���
�
� � � � � ���

�
�) be a set of vectors in a space � i.i.d. sam-

pled according to an unknown probability density function
(pdf) �� (resp. ��). We want a dissimilarity measure��������
to be small if the vectors in �� are located in the same part
of the space as the vectors in �� and of course, ��������
must be large in any other case. This enables the following
test, typically implemented in decision algorithms:
�

�� � �������� � � (Sets are similar)
�� � �������� � � (Sets are dissimilar)

(1)

where � is a threshold that tunes the sensibility/robustness
compromise. In, e.g., detection problems, � tunes the false
alarm/miss alarm ratio.

Under the assumption that �� and �� are unknown, if
one wants to build �������� upon statistics based on the
sole knowledge of the data sets �� and ��, possible ap-
proaches include the comparison of statistics directly com-

puted on the data, of inferred distributions, of empirical den-
sity estimates... The approach in [1] was slightly different,
as we had defined a dissimilarity measure ����� �� built on
estimated quantiles of �� and ��. Roughly, a quantile ��

��

for the pdf �� is a region of the space � that contains most
of �� probability mass. In [1], quantile estimation was per-
formed via a single class �-support vector machine (SVM),
and����� ��was defined as a Fisher-like ratio aimed at com-
paring the estimated quantiles��

��
and��

��
of pdfs �� and

��. This is recalled in Section 2.
Though ����� �� is defined as a Fisher-like ratio in fea-

ture space, we have no guaranty that it actually behaves like
the true Fisher ratio when �� and �� are Gaussian pdfs, i.e.
when the Fisher ratio is most relevant. Assume �� and ��
are Gaussian with means �� and ��, and with covariance
matrices �� and ��. The Fisher ratio is [2]

�� ���� ��� � ��
�
� �

�
����� ����

����
�
� �

�
� (2)

In the case where �� � �� � �, �� ���� ��� is a distance
between �� and ��, as it equals the Kullback-Leibler diver-
gence, and also the Mahalanobis distance denoted ���

�
�

������� (see, e.g., [3]). In Section 3, we show that the dis-
similarity measure defined in [1] actually behaves asymp-
totically (as ��,�� 	 
) like the Fisher ratio (or equiva-
lently, the Kullback-Leibler divergence) in the case of Gaus-
sian distributions with identical covariance matrices. More-
over, ����� �� has a relevant behavior even when �� ��� ��
does not.

The results obtained in Section 3 are a starting point to
build a large class of dissimilarity measures also defined in
feature space, which all possess the above asymptotic prop-
erty. These dissimilarity measures are built in Section 4,
using so-called metric preserving functions. Section 5 is
dedicated to the comparison of the Fisher ratio to some dis-
similarity measures designed in Section 4. Finally, conclu-
sion and future research directions are proposed in 6.

2. A FIRST DISSIMILARITY MEASURE

For the sake of brevity, we do not recall here single-class �-
SVM. Sufficient elements can be found in, e.g., [4]. We em-
ploy the following usual notations: 	��� �� is a kernel induc-
ing a mapping 
��� from input space � to feature space�,
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and the ��� , � � �� � � � ��� , � � �� �, are the weights yielded
by the SVM. The inner product in � between two mapped
training vectors � ������ ���� � 	� equals 
���� ���. In
the following, we assume that 
��� �� takes values between �
and �, and is such that �� � � � 
��� �� � �1.

Assume that two single-class classifiers are trained in-
dependently on the sets �� and ��, yielding the regions
��
��

and��
��

or, equivalently in feature space�, the hyper-
planes �� and �� parametered by ���� ��� and ���� ���.
In �, the vectors �� and �� define a 2-dimensional plane,
denoted � , that intersects the hypersphere � along a circle
with center � and radius 1, as depicted in Fig. 1. Actually,
in the pathological case where �� and �� are collinear,
there is an infinity of planes � , and one can select any of
them. We recall that �� (resp. ��) equals

���

��� �
�
�
����

�
�

(resp.
���

��� �
�
�
����

�
�).

��

������
��

������

��

��

��

��

�

����

�radius� ��

Fig. 1. The SV single-class classifiers yield two hyperplanes
������ ��� and������ ���. The circle represented corre-
sponds to the intersection of the plane � (uniquely defined
by �� and ��) and the hypersphere �. The intersection of
the line

�
����

�
(resp.

�
����

�
) with � yields �� (resp. ��),

and the intersection of the hyperplane�� (resp. ��) with
� in the plane � yields two points, any of which is denoted
�� (resp. ��).

In feature space, the hyperplane�� (resp. ��) bounds
the segment of � where all the mapped inliers of �� (resp.
��) lie. Mapped training vectors located right on the bound-
ary �� (resp. ��) are called Margin support vectors, and
are denoted �MSV

�
(resp. �MSV

�
). In [1], we proposed the

following intra-regions/inter-regions ratio inspired by the
Fisher ratio [2]:

	�������� �
�arc���� ���

�arc������� � �arc�������
(3)

where �arc����� �

(

�� denotes the arc distance between
two vectors � and � on �. Considering �� only, we see that
the arc distance �arc������� is a measure of the spread of
samples of the mapped training set ����� in feature space.

1These are mild conditions over kernels, which are verified, e.g., by the

Gaussian kernel ���� �� � ���

�
�
��������

�

���

�
, with � � �.

The more these samples are spread, the higher the distance
�arc�������, and the smaller the margin ��


��

. The dis-
similarity measure 	���� �� thus has the expected behavior
in feature space, namely it is high for well separated sets,
and it is small for strongly overlapping sets. The patholog-
ical case where �� and �� are collinear and where �� and
�� have zero spread is not considered, as it can easily be
dealt with by adding some small � 	 � to 	���� �� denomi-
nator.

As the mapping ���� is generally unknown, the compu-
tation of 	���� ��, which is defined in feature space, is pos-
sible only if we can express it as a function of the kernel

��� �� applied to vectors of the input space � . In [1], we
had shown that the arc distance �arc����� can be computed
in terms of the kernel since

�arc����� � ��		
�
�
� ��� 	�

�
� ��		
�

�
��

�

�


���

��

�

(4)
Note that the ��		
� function is defined properly because
the vectors we consider are all located in the same (positive)
orthant of �. The inner product in Eq. (4) can be evaluated
in terms of the kernel 
��� �� even though �� and �� are not
in ��� � since �� � ��


��

� and �� � ��


��

�:

�arc���� ��� � ��		
�
�

�

�
������

�
�

�
�����

�
�

�

�
�����

(5)

where �� (resp. ��) is the column vector which entries are
the ��

�
, � � �� � � � ��� (resp. ��

�
, � � �� � � � ���). The ker-

nel matrix ���, ��� �� � ��� �
 � ��� �
 has entries at row
#� and column #� given by 
����� �

�
�� where we recall that

��� is training vector #� in the set ��. Similar calculation
can be applied to

(

���� and

(

����, and yields:

�arc������� � ��		
�
���

�
�

�
�����

(6)

Note that 	���� �� can be equivalently defined by replacing
�� in Eq. (3) by any Margin SV (denoted �MSV

�
� ���MSV

�
�)

which might not be in � . The arc distance �arc�������
equals �arc�����

MSV
�

�, because �� and �MSV
�

both are located
on the intersection of � with��, and have the same arc dis-
tance to ��. The same reasoning also holds for �� and �MSV

�
.

3. CONNECTION WITH 	� IN INPUT SPACE

In this section, we show that the dissimilarity measure	���� ��
defined in Section 2 is asymptotically equivalent to the Fisher
ratio 	� ��� �� in the case of radial Gaussian distributions.
The asymptotic behavior of �� (resp. ��) is described by
the following theorem:

Theorem 1. Let � be a set of� vectors i.i.d. sampled from a
Gaussian pdf ���� with mean � and covariance matrix � ��.
Let 
��� �� be a kernel such that

��� ��� � ��

����

�

��� � for all ��� ��� � � �� (7)
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Then, with probability one, for���, the center � yielded
by the �-one class SVM converges to � � ����.

(The proof for Theorem 1 is not exposed here for brevity
reasons). If we assume that the underlying pdfs �� and ��
are Gaussian with means �� and �� and covariance matrices
���� and ����, then

��������� ��
�������

�arc�������

�arc�����
MSV
� � � �arc�����

MSV
� �

(8)
or, equivalently��������� converges to:

�
�
���� � ����

�
���

�

�
�
���� � 	MSV

� ���
���

�
� �

�
���� � 	MSV

� ���
���

� (9)

where ��
� � ������
�
��
�

�
. As �����	MSV

� ���
��� is asymp-

totically proportional to ��� (� � 	� 
), we finally have

��������� ��
�������

�
�
���� � ����

�
���

�

�
�

���

�
� �

�

���

� (10)

where 
 � � is a constant. We note that ���� is a monotoni-
cally increasing function with ���� � � (in fact, it is shown
in Section 4 that �	� 	�� �� �

�
��	 � 	����

���

�
is a metric in

� ). This result is quite important because it shows that,
for sets sampled according to radial Gaussian distributions,
����� �� behaves like the standard Fisher ratio �� ��� �� in
input space.

Remark 2. Generalisation. This result can be generalised
to Gaussian distributions with proportional covariance ma-
trices ���� (� � 	� 
) when using the Mahalanobis Gaussian
kernel ��	� 	�� � ����	 � 	������� �. The norm in Eq. (10)
is then Mahalanobis �� � ����� instead of the Euclidean norm
�� � ����� .

As it is defined in feature space where the shape of the
mapped quantile estimate is always a segment of the hyper-
sphere �, ����� �� is well-suited to situations where �� and
�� are not Gaussian, and in particular when 	�

��
and 	�

��

have complicated, possibly non-connected, shapes. Simu-
lations on toy examples in Section 5 show that ����� �� has
the expected behavior, namely it is small for similar train-
ing sets �� and ��, and large when the training sets do not
occupy the same region in � . This illustrates the interest of
����� �� in general situations.

4. MORE DISSIMILARITY MEASURES

The dissimilarity measure ����� ��, as defined in Section 2,
is based on the arc distance in feature space. A key ques-
tion is: is it possible to define other dissimilarity measures
�� ��� �� in feature space, with the same interesting proper-
ties, but based on other distances in
?

Building on the results of the previous section, Proposi-
tion 3 describes how it is possible to generalise����� �� to a
large class of dissimilarity measures in feature space:

Proposition 3. Let ���� �� be a translation invariant kernel,
i.e., ��	� 	�� � ����	 � 	������ �. Consider a function
� 
 � � � such that: 	� ��� ��� ��� is a metric for all
��� in the positive orthant of �, 
� �

�
����	 � 	���� �

�
is a

metric for all �	� 	�� in � . Then the dissimilarity measure

�� ������� �
��� ��� �� ���

��� ����� ��� � ��� ����� ���
(11)

behaves asymptotically like the Fisher ratio in the case of
Gaussian distributions with covariancematrices proportional
to �.

The ������ function used in the definition of ����� �� ver-
ifies these two conditions, as ��� �� � ��� � �arc��� ��
and the function ��
� � ������

�
��
�

�
is metric preserv-

ing. We now recall definition and sufficient conditions about
metric preserving functions, before using them to build func-
tions ���� fitting to the conditions of Proposition 3.

Definition 4. A function � 
 ����� � ����� is metric-
preserving if for all metric spaces ��� ��, �

�
���� ��

�
is a met-

ric.

The following proposition holds (see, e.g., [5]):

Proposition 5. If � 
 ����� � ����� is concave, and
such that ������ � ��
, then ���� is metric-preserving.

Weaker conditions do exist, but the sufficient condition given
in Proposition 5 is particularly easy to check. If one chooses
���� such that 
 �� ��	�	�

�� and 
 �� ����
�� both are
metric-preserving, then the required conditions of Proposi-
tion 3 are fulfilled. An example is : ��
� � �	 � 
�����,
which is well defined as the points we consider in feature
space are all located in the positive orthant of �, or ��
� �
�	� 
����.

Yet, the property of metric-preservingness is stronger
than what is actually needed: for example, the function 
 ��
�������	 � 
��
� is not metric preserving, but �������	 �
��������

�
�
� is still a distance between � and � (it is the arc

distance �arc����� on the hypersphere �). This can easily
be explained as in Proposition 3, condition 1 (resp. 2) is to
be verified for the induced metric �� ������ (resp. �� ������ ),
and need not be true for any metric in
 (resp. � ).

In fact, once a function satisfying Proposition 3 is found
(possibly a non-metric preserving function), it is possible
to build other valid functions ���� by composition with any
metric-preserving functions, such as, e.g., ���
� � �
 with
� � �, ���
� � �����	 � 
�, ���
� � �

��� , ���
� �

��	�
� �� with � � �, ���
� � 
	 with � � � � 	.
The corresponding dissimilarity measure �� ��� �� defined
by Eq. (11) has the same asymptotic behavior as ����� ��;
it also shares ����� �� relevant behavior when the quantiles
to estimate have complicated shapes.
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5. SIMULATION RESULTS

In this section, we compare on toy examples the behavior
of some dissimilarity measures �� ��� �� built using sections
2 and 4 to the Fisher ratio. We select three dissimilarity
measures ��� , � � �� � � � � �, defined using Eq. (11) and
����� � �����	���, ����� � �� � ������ and ����� �
�

��� . The kernel we use is the Gaussian kernel ���� �� �


��
�
����� ������
	�

�
with 	 � 
��.

The first toy data set is composed of two 2-D Gaussian
populations �� and �� (with variance �), and with mean

���� � 
� � � and 
���� � 
� � ��
��, where � denotes
the time instant. Both sets size is ��. We see in Fig. 2 that all
the dissimilarity measures have the same behavior: they are
small when �� and �� are very similar, and large when ��

and �� occupy the same spatial location. In the second toy

Evolution of the training sets �� and �� in input space
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Fig. 2. When the data sets are drawn from Gaussian distri-
butions, the Fisher ratio and dissimilarity measures (plotted
as functions of the distance between 
� and 
�) which are
built according to Section 4 all have a relevant behavior.

data set, �� again is sampled from a Gaussian distribution
with fixed mean 
���� � 
� and variance 	� � �; the set
�� is sampled from a mixture of two Gaussian distributions
with mean 
���� � 
����
�� and 
�

���� � 
����
��, and
with variance 	��
. The size of �� and �� is ��. In Fig. 3,
all the dissimilarity measures built according to the method
proposed in Section 4 have the expected behavior (they in-

crease as the training sets are better separated), whereas the
Fisher ratio decreases.
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Evolution of some dissimilarity measures between �� and ��
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Fig. 3. Though 
� � 
�, the sets �� and �� do not occupy
the same region in � . The dissimilarity measures built ac-
cording to Section 4 still have a relevant behavior, but the
Fisher ratio does not.

6. CONCLUSION

In this paper, we presented the statistical study of the dis-
similarity measure ����� �� introduced in [1]; in particular,
we showed that it generalised the Fisher ratio, and extended
its range. It then helped to define a large class of dissimi-
larity measures �� ��� ��. Future direction research include
the study of further connections with classic dissimilarity
measures met in Signal Processing.
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