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ABSTRACT

We consider the problem of sequential prediction of arbi-
trary real-valued sequences with side information. We first
construct a universal algorithm that asymptotically achieves
the performance of the best side-information dependent con-
stant predictor, uniformly for all data and side-information
sequences. We then extend these results to linear predictors
of some fixed order. We derive matching upper and lower
bounds, and show that the algorithms are not only universal
but they are also optimal such that no sequential algorithm
can give better performance for all sequences.

1. INTRODUCTION

In this paper, we investigate the problem of predicting a se-
quence z[t],t = 1,...,n with an associated side-information
sequence s[t], t = 1,...,n, as well as the best predictor
out of a large class of predictors. The real valued data se-
quence ™ = {z[t]}}=, is bounded, |z[t]| < A, but other-
wise arbitrary, and the side-information sequence takes val-
ues from a finite set s = {s[t] € {1,...,K}}; ;. The
side-information sequence is used to incorporate additional
information for prediction and may depend on the entire 2™
in an arbitrary manner. Rather than making stochastic as-
sumptions on the data or side information sequences, we
simply try to predict the sequence ™ as well as the best
predictor out of a large fixed class of predictors for all se-
quences z™ and side-information sequences s™.

We first consider the class of state-constant predictors
such that the predictor predicts the same value ¢; € R when
s[t] =4, = 1,...,K, given the state at time t. Hence
there exist only K degrees of freedom for the output of the
predictor. When there is no side information, i.e. K = 1,
the predictor is a simple constant predictor. Although, this
is a rather limited class of prediction in forecasting ability
against which to compete, we permit the constants ¢; € R,
it =1,..., K, to be selected based on observing the entire
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sequence and the associated side information states in ad-
vance of any prediction to be made. As such we seek to
minimize the following regret

sup {l(z", z|s") — 1" (2", z[s™)}
x™,s"

where [ (z™,27|s™) is the aggregated loss of any sequen-
tial prediction algorithm z,[¢] that we might employ which
for the square-error loss function would be I (2™, z7|s™) =
Yo (@[t] — z,[t])? and I* (2", z7|s™) is the aggregated
loss of the best state-constant algorithm for the sequence ™
and the side-information state sequence s™.

We will construct a particular sequential algorithm such
that this regret is at most K A% In(n) and then demonstrate a
corresponding lower bound of the same order (K A2 In(n))
for any sequential algorithm, indicating a form of min-max
optimality.

We then proceed to consider the class of state-constant
fixed-order linear predictors such that each competing pre-
dictor forms its prediction as a linear function of the past ob-
servation sequence depending on the side-information state
sequence. For this paper we will consider fixed-order pre-
dictors with order m, where m is an integer. As such, the
prediction at time ¢ is given by Y ;* , w; ,x[t — k] when
st] = dand i = 1,...,K where wi,1,...,Wk,m € R.
Depending on the state sequence and the particular value of
state s;, at each time there are m degrees of freedom for
selecting the prediction parameters w; . Hence, there are
K'm parameters that can be selected. For the determination
of I* (z™, z7|s™) the corresponding w; ;s can be chosen by
observing the entire sequence =™ and side-information state
sequence. Here, we seek to minimize
sup {l (x™, z7|s™) — I* (m",x%b")} ,

z™,s"

where [* (x”,x%ﬁ") is the aggregated loss of the best

state constant mth-order linear predictor for the sequence
™ with the side-information state sequence s™. We con-
struct a sequential algorithm such that this regret is at most
mK A% In(n) and also demonstrate a lower bound of order
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mK A?1n(n) for any sequential algorithm, again demon-
strating a form of min-max optimality.

The idea of using side-information is applied by Cover
in [3] for universal sequential investment. In [3] the authors
present a universal algorithm that achieves, to first order in
the exponent, the wealth of the best side-information de-
pendent investment strategy. We extend this formulation of
the problem to data prediction and seek universal algorithms
that are optimum in certain min-max sense. Our algorithms
are not only universal, i.e. they achieve the performance
of the best batch predictor sequentially, but also their re-
gret with respect to the best batch algorithm cannot be ex-
ceeded by any algorithm for all sequences as given by the
corresponding lower bounds. The approach taken in this pa-
per for constant predictors is based on universal sequential
probability assignment and is similar to Vovk’s Aggregating
Algorithm for linear regression with the square error loss
function [1].

2. STATE CONSTANT PREDICTORS

We first study the class of constant predictors when there
is no side-information, i.e. K = 1. That is, we wish to
obtain a sequential predictor that can predict every sequence
z™ as well as the best constant predictor for that sequence
even when the constant predictor is selected by observing
the entire sequence in advance.

Minimizing ;" ; (z[t] — ¢)” for a specific sequence z™

yields the well-known least squares optimal parameter, c[n] =

L i1 =[t] which is a function of the entire sequence. A
slightly more general loss function is given by,

min, Y, , (2[t] — ¢)® + 8(c — ¢o)?, where § > 0 and ¢o
are given. Here, ¢ is used to incorporate the additional a pri-
ori knowledge ¢y concerning ¢ in the problem statement. In
this paper we will assume ¢y = 0 without loss of generality.
From this loss function, we derive a universal algorithm by
performance weighted combination of all constant predic-
tors using similar ideas to those introduced in [2] yielding,

zu[n] = +5 Z

We next relate the performance of thls universal algorithm,
I(z"™,z?) 2 Sy (z[t] — z4[t])? to the best constant pre-
dictor.

Theorem 1: Let z[n] be a bounded, real-valued arbitrary
sequence such that |z[n]| < A for all n. Then, 1 (z™,zT)
satisfies,

1 1. . A?

~l(a", o) < —inf ;(w[t] —c¢)? + —(1+1In(n +1)).
Theorem 1 states that the average squared prediction er-
ror of the universal predictor is within O (n="In(n)) of the

batch constant prediction algorithm, uniformly, for every in-
dividual sequence z™. The proof of Theorem 1 follows that

of Theorem 1 of [2] based on sequential probability assign-
ment and is omitted here for brevity.

The predictor described in Theorem 1 is optimal in that

no sequential predictor can do much better in a min-max
sense. This is made precise in the following theorem re-
ported by Vovk[1],
Theorem 2: Let x[n] be a bounded, real-valued arbitrary
sequence such that |z[n)| < A foralln. Let z,[t] be the pre-
diction from any sequential algorithm. Then for any € > 0
there exists a constant G such that

1 n ) ) n )
inf sup {;(-’E[t] Za[t])” — inf 2 (z[t] - o) }
2
> A0 1 - €
n n
where S is the class of all sequential predictors.
Theorem 2 states that for any sequential algorithm, there
exists a sequence such that the time-average squared predic-
tion error is at least O(n~! In(n)) worse than the constant
predictor tuned for that sequence.
When there is side-information, K > 1, we seek to min-

imize the following regret

sup {Z (alt) = walt])’ = inf > (alt] - cs[t])z}

zmsm | i c1senon€R I

where z,[t] is the prediction of any sequential algorithm.
From the results of Theorem 1, we derive a state-constant
universal algorithm as

nlll= Zf(s f]) a[i],

where n,[ is the number of occurrences of state s[t] in
i=1,...,t — 1, and I(.) is the indicator function. Multi-
ple application of the Theorem 1 to sequence ™ with side-
information sequence s™ yields,

Theorem 3: Let ™ be a bounded, real-valued arbitrary
sequence such that |z[t]| < A, with an associated side-
information sequence s™ taking values from a finite set s[t] €

{1,..., K} forallt. Then,

n n

tzl (alt] = 2alf)” — | inf R; (28] = eo)”

1 +1In(n;)) < KA?In(n) + O(1).

||MN

where nj is the number of occurrences of state nj in s™.

Theorem 3 states that the average squared prediction er-
ror of the state-constant universal predictor with side infor-
mation is within O(Kn~!In(n)) of the batch state-constant
prediction algorithm, uniformly, for every individual sequence
z™ and state sequence s™.
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To lower bound the performance of any sequential algo-
rithm with respect to best state-constant predictor, we prove
the following theorem,

Theorem 4: Let ™ be a bounded, real-valued arbitrary
sequence such that |x[t]] < A, with an associated side-
information sequence s™ taking values from a finite set
{1,..., K} for all t. Let x,[t] be the prediction from any
sequential algorithm. Then for any € > 0 there exists a
constant G such that

inf sup {z (ol —walt)” - fuf > _ (ol - csmf}
> KAZ(I —¢€)In(n) —

where S is the class of all sequential predictors.
Outline of the Proof of the Theorem 4: For an arbitrary
state sequence s™ and for any distribution on 27,
1nf sup {l(z",z?|s™) —I* (z™,27|s™)}
z" s™

> inf Egn {I (2™, 27|s") — I* (2™, 27|s™)},
a€S

where E,n () is an expectation taken with respect to the dis-
tribution on 2™. We proceed to apply Theorem 2 repeatedly
for sequence values with the same state label.

For any state label ¢+ = 1,..., K, we consider the fol-
lowing distribution on the values of 2™ with s[t] = i. Let
0; be a random variable drawn from a beta distribution with
parameters (C;, C;), such that

I'(2C;)

mgCi—l(l _ oi)Ci_l’

p(6;) =
where C; > 0 is a constant and I'(+) is the gamma function.
For any state i, generate the sequence ™ having only two
values, A and —A, such that z[t] = A with probability 6;
when s[t] = i and z[t] = —A with probability (1 —6;). The
6;’s are selected independently and given all §;’s, each z[t]
is independent. Then following the lines of Theorem 2, we
conclude

1nf sup (I (z™,z%|s™) —I* (2™, 27|s™))

z" s™

> max ZAZ(I —¢€)In(n;) —

nl, HNK

where n; is the number of occurrences of state ¢ in s” and
Efil n; = n. Maximizing this lower bound with respect
to the n;’s give the corresponding lower bound of Theorem
4.

3. LINEAR CONSTANT PREDICTORS WITH SIDE
INFORMATION

In this section we extend the previous results for constant
predictors to linear predictors. We first report the results

corresponding to the class of mth-order linear predictors
when there is no side-information, i.e. K = 1. Here, we
seek to minimize the regret
2
Tt - 1]) }

n n
sup {Z (@[] - za[t])® — inf > (:L'[t] —
¥ =1 WER™ 4—;

where z,[t] is the prediction at time ¢ of any sequential algo-
rithm, @ = [wy, . .., wy,]T and Z[t — 1] = [z[t-1],...,z[t—
m]]T. That is, we wish to obtain a sequential predictor that
can predict every sequence ™ as well as the best batch mth-
order linear predictor tuned for that sequence, even when the
linear predictor is selected by observing the entire sequence

in advance.
Minimizing the total prediction error, [ (2", a:Z_].) =

2
Yo (m[t] — Tt — 1]) over a batch of data of length
n yields the well-known least squares solution @[n] =
n no o ) T
(R_._.) lrzf, when R%o = 3500, &t — 1]at — 1]
= Y, z[k]Z[t —1].

l(:c”, Ts) + 6w i where § > 0, a universal predictor ., [n]

was constructed as

In [2] for the loss function,

uln] = @y[n — 1) n - 1],
L -1

(Rt + 1)

T aZ

For the performance of this universal predictor, we have:

Theorem 5: Let ™ be a bounded, but otherwise arbitrary
sequence, such that |z[t]| < A for all t. Then the total
squared prediction error of the mth-order universal predic-
tor satisfies

2 3Gl =l <

where @y, [n] =

inf I(z", 2™ + 8wt
weRmn(( )

mA? A?n
) + In (1 + ) .
n )
Theorem 5 tells us that the average squared prediction error
of the mth-order universal predictor is within O (m In(n) /n)
of the best batch mth-order linear prediction algorithm, for
every individual sequence z™.

The predictor described in Theorem 5 is optimal in that
no sequential predictor can do much better in a min-max
sense. This is made precise in the following theorem [2],
Theorem 6: Let x[n] be a bounded, real-valued arbitrary
sequence such that |z[n]| < A for all n. Let x4[t] be the
prediction from any sequential algorithm. Then for any € >
0 there exists a constant G such that

1] 2
inf sup z[t] — xo[t]))” — inf I(z",z’%
it {3l -l - ot 1o |

> %ln(n) _=
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where S is the class of all sequential predictors.

When there is side-information, X > 1, we seek to min-
imize

t=1
- 2
- inf z[t] — ,u-)»Z“ CaElt =1
Wh,...,Wx ER™ tz:; ( [ ] [t—1] [ ]) }

where x,[t] is the prediction of any sequential algorithm.

From the results of Theorem 5, we derive a state-constant
universal algorithm depending on the state at time n as

-1

Tyn] = lZI (s[k] = s[n]) Z[k — Uz[k — 1]T + 61

lz I (s[k] = s[n]) z[k]&[k — 1]] #n — 1],

k=1

Multiple application of Theorem 5 to the sequence ™ with
side-information yields,

Theorem 7: Let ™ be a bounded, real-valued arbitrary
sequence such that |x[t]] < A, with an associated side-

information sequence s" taking values from finite set, i.e.
s[t] € 1,...,K forall t. Then,

_ . _ — 2

s {; 1: (aft) = @7 _yalt — 11)” + Sl }
Az

< E A’min (l-l- 3 ) < KmA?In(n) + O(1),

i=1

where n; is the number of occurrence of state i in s™.
Theorem 6 states that the average squared prediction error
of the state-constant universal predictor with side-information
is within O(mKn 1 1n(n)) of the batch state-constant pre-
diction algorithm, uniformly, for every individual sequence
x™ and state sequence s™. The mK term can be recognized
as the number of degrees of freedom in the batch algorithm.

To lower bound the performance of any sequential al-
gorithm with respect to state-constant linear predictors, we
prove the following theorem.

Theorem 8: Let ™ be a bounded, real-valued arbitrary
sequence such that |x[t]] < A, with an associated side-
information sequence s" taking values from finite set, i.e.
s[t] € {1,..., K} for all t. Then for any € > 0 there exists

a constant G such that

inf sup {Z (z[t] — z4[t])”

a€S gn gn

— _inf Zm[t

—1 wWieR™

—l, 3 [t—l) } ZmAZ 1—e)ln(n;) —G

> mKA%In(n) — O(1),

where x4[t] is the prediction of any sequential algorithm
and n; is the number of occurrences of state i in s™.

This lower bound matching the upper bound in Theorem
7 shows that the universal algorithm is also optimal in this
min-max sense.

Outline of the Proof of Theorem 8: The proof of Theo-
rem § follows along the lines of Theorem 6. For an arbitrary
state sequence s™ and for any distribution on x™,

moxt|s™) — I* (m”,xz_ﬂs”)) >
z?|s™) —I* (m",m"w.|s")] ,

where F,x (+) is an expectation taken with respect to the dis-
tribution on ™. Since this is true for all s™, we select s™ as
the concatenation of K repeating states sequences each with
n; repeated entries of state ¢ and with a single transition be-
tween consecutive regions, where . ; n; = n. For each
region ¢, we independently draw m random variables 6y,
k =1,...,m, from a beta distribution. Then for each k the
corresponding two state Markov chain is generated where
x[t] = z[t— 1] with probability 6, and z[t] = —z[t—1] with
probability (1 — 6j). These m independent Markov chains
are interleaved to give ™ in ith region. Hence at any time
t the predictor can use only the information coming from
t — mth sample of the same state ¢ due to the independence
of the 8,’s. Hence for each time interval, application of The-
orem 6 gives a lower bound of order O(m A% In(n;)). After
maximizing the final lower bound with respect to the n;’s,
we obtain the corresponding result completing the proof of
Theorem 8.

inf s (l
R A

B 1o
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