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ABSTRACT

An information-theoretic approach is developed for target
detection, with active selection of training set, directly from the
site-specific measured data. For the proposed kernel-based
algorithm, a set of basis functions are defined first to
characterize the signature distribution of the site, then we
determine a parsimonious set of data, for which knowledge of
the associated labels would be most informative to determine the
weights for the basis functions. Both of them utilize the Fisher
information criteria. The proposed framework is applied to
subsurface target detection, with example results presented for
an actual buried unexploded ordnance site.

1. INTRODUCTION

In many target-detection problems, the target signatures are a
strong function of environmental and historical circumstances.
For example, in landmine and unexploded ordnance (UXO)
sensing, the task is strongly influenced by which ordnance are
present, on how the ordnance impacted the soil, and on the
surrounding conducting clutter and UXO fragments. Therefore,
for algorithm-training purposes, it is difficult to define a set of
target signatures that are generally representative for different
sites. In this paper we investigate a technique whereby detection
and classification algorithms may be designed without requiring
a separate training set of representative target and clutter
signatures.

Let {xi}i=1,N represent the measured signatures of the N
objects at a given site, with the set of all xi denoted as X.
Further, let {yi}i=1,N represent the associated unknown binary
labels (target/non-target), to be determined in the detection
phase. We here develop a kernel-based classifier, by which an
observed feature vector x is classified using the function
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where bi is the center of the ith basis function, wi is the
associated weight, wo is a scalar offset or bias, and K(x,bi) is a
general kernel that defines the similarity of x to bi. Algorithms
that utilize the form in (1) include the support vector machine
(SVM) [1], and many other related algorithms [2-4]. The bi and
wi in (1) are typically estimated from a separate training set, for
which the associated labels yi are known. However, the
variability of target signatures makes the idea of utilizing a
separate training set undesirable and often impractical.

In the approach proposed in this paper, the set of basis
functions Bn = {bi}i=1,n is selected from the set of observed data

X, i.e. Bn ⊂ X. The set Bn is defined by selecting those
signatures from X that are most representative of the measured
data from the site of interest, using fundamental information-
theoretic considerations. Note that the labels of the objects
associated with Bn are not required at this point. Having defined
the basis set for (1), we require labeled data to determine the
associated model weights {wi}i=1,n and wo (denoted collectively
by the vector w). Then we define a subset of signatures Xs ⊂ X,
for which knowledge of the associated labels Ls would be most
informative in the context of defining the model weights. The Xs

is again determined via information-theoretic metrics. Note that
the sets Bn and Xs may overlap, but they are in general distinct.
The determined algorithm is thereafter applied to x ∉ Xs. The
key point is that the training set (Xs,Ls) is selected adaptively on
the observed site-dependent data, via fundamental information-
theoretic metrics, and therefore no a priori training data
required.

The proposed approach has been applied to both subsurface
UXO detection and underwater mine detection. With measured
sensor data from actual test sites, we observe that the false-alarm
rate is significantly reduced, as a result of the fact that the
adaptively designed algorithm is well matched to the
environment. In this paper, only UXO results are presented due
to space limitation. At the conference we will also demonstrate
results for sonar underwater mine detection.

2. ACTIVE CLASSIFIER DESIGN

The decision function in (1), using n basis functions, may be
expressed concisely as [3]
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Assume that the item associated with signature xi is recovered
(this is termed an “experiment”), from which we learn the
associated label yi, where by construction yi=1 for target and yi=-
1 for no-target or clutter. The label recovered by the experiment
is related to the prediction fn(x) by
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where εi = ε(xi) is the error term resulting from imperfections in
the model. In algorithm design one desires the decision function
fn(x) that minimizes the error observed on training data, for
which the data and labels are known. If the training data is well
matched to the subsequent testing data, then the algorithm is
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likely to constitute a robust detection procedure. However, it is
impractical to have a separate training set in many target-
detection problems.

2.1 Selection of Basis Functions

If we assume that the εi in (5) is independent and zero-mean with
variance 2

iσ , and then the Fisher information matrix associated

with X and Bn is expressed as
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where )(, inin xφφφφφφφφ ≡ . Note that in computing Mn we do not

require the labels associated with Bn and X (this is a result of the
fact that the model in (2) is linear in the weights wn). As
discussed by Fedorov [5], the Fisher information matrix in (6) is
associated with the errors in fitting the model to all N measured
xi, using the basis Bn. By appending a new basis function to

)(⋅nφφφφ , one obtains
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where ),()( 11 ++ ⋅=⋅ nn K bφ and Xb ∈+1n , nn Bb ∉+1 . Following

(2), we can write from 1+nφφφφ the augmented classifier 1+nf , for

which the Fisher information matrix is found to be
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where )(1,1 inin x++ ≡ φφ . The expression in (8) is again associated

with fitting the model to the N measured xi, but now using the
(n+1)-dimensional basis Bn+1, vis-à-vis the n-dimensional basis
Bn in (6).

Among many ways of comparing the information content
reflected by Mn and Mn+1, we here employ the so-called D-
optimal procedure [5], defined as the determinant of the
information matrix. The logarithm of the determinant of M is
denoted qn, and it can be shown that
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Since nN ≥ and n of the vectors Niin ,1)}( =x{φ{φ{φ{φ are linearly

independent, the matrix Mn is full rank and its inverse exists.
Under these conditions, it can be shown that 0>r , and
therefore rln in (9) is generally valid.

It is known from information theory [6] that the inverse of

nM gives the Cramer-Rao lower bound (CRLB) of the

covariance matrix of the estimate of nw , and the reciprocal of qn

lower bounds the product of its eigenvalues. Given the nth order
decision function nf , qn is fixed, and one relies on maximization

of )(ln 1+nr b to obtain a large value of qn+1. This can be achieved

by conducting a “greedy” search for the new 1+nb in X with the

previously selected support data excluded
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Basis elements bn are added until the information gain reflected
in qn+1-qn is no longer deemed significant. Note that evaluation
of (11) does not require knowledge of the target labels yi.

2.2. Selection of Labeled Data for Model Training

Labeled data are required to optimize the associated model
weights w. We select those Xx ∈i for which knowledge of the

associated labels yi would be most informative in the context of
defining w. Those xi that are so selected define a subset of
signatures XX ⊂s , and these items are recovered to yield the

respective set of labels Ls. The set of signatures and labels (Xs,
Ls) are then used to define the weights w in a least-squares
sense, and the resulting model f(x) is then used to specify which
of the remaining signatures sXx ∉ are likely targets of interest.

Assume that there are J signatures in Xs, denoted Xs,J. We
quantify the information content in Xs,J in the context of
estimating the model weights w, and further ask which Jsi ,Xx ∉
would be most informative if it and its label were added for
determination of w. Analogous to (6), we have
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The expressions in (6) and (12) both employ an n-dimensional
basis set XB ⊂n . The distinction is that in (6) we are interested

in defining Bn, and we sum over all observed signatures {xi}i=1,N.
By contrast, in (12) the basis set Bn is known and fixed, and we
are only summing over those signatures Xs,J for which
knowledge of the associated labels is most informative in
defining the model weights w. After adding a new signature

Xx ∈i , Jsi ,Xx ∉ , we now have 1, +JsX and Mn is updated as
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where iJ+1 represents the index of the new signature selected for
Xs,J+1. Using the matrix identity det(A+FFT) = det(I+FTA−1F)
det(A), one obtains from (13)
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Care is needed with regard to evaluating the inverse of Mn, since
if J<n the matrix is rank deficient. A standard approach for
inversion of such matrices is to add a small diagonal term to Mn,
such that its inverse exists. Alternatively, by construction one
can assume that the items associated with the basis Bn are all
associated with Xs,J, yielding a minimum of n labeled data and
therefore assuring that the matrix is full rank. We have examined
both procedures, and they yield comparable results in examples
presented in Sec. 3. To define

1+Ji
x , one iteratively maximizes

)(ln
1+Ji

xρ to obtain
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We again do not require the signature labels. The elements of
Xs are selected iteratively, in a “greedy” fashion until the
information gain is below a prescribed threshold. After J
iterations we have defined those signatures Xs,J, for which
knowledge of the labels will best approximate the weights w.
These items are recovered, yielding the labels Ls,J.
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For the assumptions underlying the linear model in (5) and
that )( ixε is i.i.d. over the set of i, the optimal estimation for the

weights w with knowledge of Bn and (Xs,J, Ls,J) is expressed as

y
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where y represents the set of labels determined via the J
experiments
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In the classification stage we consider Js ,Xx ∉ and compute

f(x). For a prescribed threshold t, x is deemed associated with
the +1 class if tf ≥)(x , and associated with the -1 class if
f(x)<t, and by varying the threshold t one yields the receiver
operating characteristic (ROC).

3. APPLICATION TO UXO DETECTION

The active-training methodology addressed in this paper may be
applied to any detection problem for which the data labels are
expensive to acquire, and for which there is no distinct training
data. In particular, we demonstrate the detection results of buried
UXO for data collected at an actual UXO site: Jefferson Proving
Ground (JPG) in the United States. For UXO remediation, the
label of a potential target is acquired by excavation, a dangerous
and time-consuming task. The overwhelming majority of UXO
cleanup costs come from excavation of non-UXO items. If at the
desired detection probability, the false-alarm rate is reduced,
then overall cleanup costs may diminish substantially. One
principal challenge in UXO sensing is development of a training
set, for design of the detection algorithm.

3.1. Magnetometer and Electromagnetic Induction Data at
JPG

Magnetometer and electromagnetic induction (EMI) sensors are
widely applied in sensing buried conducting/ferrous targets, such
as landmines and UXO. The magnetometer is a passive sensor
that measures the change of the earth’s background magnetic
field due to the presence of a ferrous target. An EMI sensor
actively transmits a time-varying electromagnetic field, and
consequently senses the dynamic induced secondary field from
the target. We here employ a frequency-domain EMI sensor that
transmits and senses at several discrete frequencies. Parametric
models have been developed for both magnetometer and EMI
sensors [7,8]. The target features x are extracted by fitting the
EMI and magnetometer models to measured sensor data. The
vector x has parameters from both the magnetometer and EMI
data, and therefore in this sense the data from these two sensors
are “fused”. Details on the magnetometer and EMI models, and
on the model-fitting procedure, may be found in [8].

Jefferson Proving Ground is a former military range that has
been utilized for UXO technology demonstrations since 1994.
We consider data collected by Geophex, Ltd. in the latest phase
(Phase V) of the JPG demonstration. Our results are presented
with the GEM-3 (an EMI sensor) and magnetometer data from
two adjoining areas, constituting a total of approximately five
acres.

This test was performed with US Army oversight. One of
the two JPG areas was assigned as the training area, for which
the ground truth or labels (UXO/non-UXO) were given. The
trained detection algorithms are then tested on the other area,
and the associated ground truth was revealed later to evaluate
performance. It was subsequently recognized that most UXO
types were found in equal number in each of the two areas. This
indicates an artificial effort to match the training data to the
detection data in this demonstration, which is not always feasible
in practice. There are 300 potential targets detected from sensor
anomalies after the model fitting based prescreening, 40 of
which are proven to be UXO and the others are clutter. The
excavated UXO items include 10 different types. In the training
area, there are 128 buried items, 16 of which are UXO.

3.2 Detection Results

We present ROC curves using the adaptive-training approach
developed in Sec. 2, with performance compared to results
realized by training on the distinct training region discussed
above (the latter approach reflects current practice). With regard
to conventional training, the algorithm employed is of identical
form as (2), which here is determined iteratively using kernel
matching pursuits (KMP). Details on the KMP algorithm may be
found in [3]. To make the comparison appropriate, both the
adaptive training and KMP implementation employ the radial
basis function (RBF) kernel [4] with variance adaptively
adjusted by the algorithms.

In the first example, to be consistent with the size of the
training area specified in the JPG V test, the adaptive technique
in Sec. 2 is employed to select J=128 items from the original
300. The 128 “recovered” labels are utilized to build the
classifier. Then the adaptive learning algorithm is tested on the
remaining 172 items. The basis set Bn is also defined adaptively
using the original 300 signatures. Here the number of n is
automatically determined to be 10 via the information gain
criterion, and consequently utilized for all results. Performance
comparisons are shown in Fig. 1, wherein we present results for
active data selection, KMP results using the assigned 128
training examples, and average results for randomly choosing the
128 examples for KMP training. For the latter case, 100 random
selections were performed, and we place error bars on the
results. The length of the error bar is twice the standard
derivation of the Pd (detection probability) for the associated
false-alarm count. We observe from the results in Fig. 1 that the
active data selection procedure produces the best ROC results
for Pd>0.7, which is of most interest in practice. The average
performance based on choosing the training set randomly is
substantially below the other two, with significant variability
reflected in the error bars. These results demonstrate the power
of the developed active-data-selection algorithm, and also that
the training data defined for JPG V is well matched to the testing
data.

The active training algorithm in Sec. 2 has been
implemented with several smaller values of J down to 40,
reflecting less cost for determination of target labels required in
the training phase. For all cases, the performance of the active
training technique upper bounds the random training selections.
We only show the results of one example, where J is determined
adaptively from the procedure in Sec. 2. Specifically, we track

)()( 1,, −− JsnJsn qq XX for increasing J, and terminate the
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algorithm when the information gain is minimal. At this point,
adding a new datum to the training dataset does not provide
significant additional information to the classifier design. The
information gain )()( 1,, −− JsnJsn qq XX is plotted in Fig. 2(a) as a

function of J, and the change in information gain is given in Fig.
2 (b) for visualization assistance. Based on Fig. 2 the size of the
training set is set to J=65. In Fig. 3 results are shown for J=65,
with comparison as before to KMP results in which the J=65
training examples are selected randomly. From Fig. 3, we
observe that the active selection of training data yields a
detection probability of approximately 0.95 with approximately
35 false alarms; on average one encounters about five times this
number of false alarms to achieve the same detection probability
when selecting the training data randomly.

4. CONCLUSIONS

Due to the variability and site-dependent character of target
signatures, it is often difficult to have reliable training data a
priori for algorithm design. In this paper we have therefore
developed an information-theoretic framework in which the
training data is selected adaptively from the observed site-
dependent data, without requiring an a priori training set. The
algorithm specifies those signatures for which knowledge of the
associated labels (e.g. target/non-target) would be most relevant
in the context of detector design. An “experiment” is then
performed to learn the target labels. This is a reasonable
procedure in many applications, including landmines/UXO
detection where targets need be excavated ultimately anyway,
and therefore the algorithm essentially prioritizes the order in
which items are excavated, with the goal of ultimately
excavating fewer non-targets via proper algorithm training.
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Fig. 1. ROC curves based on J = 128 training examples.

Fig. 2. Information gain of adding a new datum (a), and
difference in the information gain (b), as a function of the

number of the training examples J.

Fig. 3. ROC curves based on J = 65 training examples, number
of training examples chosen based on Fig. 2.
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