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ABSTRACT

We address the longstanding problem of learning and model
selection in finite mixtures. A common approach is to generate
solutions of varying number of components (via the Expectation-
Maximization (EM) algorithm) and then select the best model in
the sense of a cost such as the Bayesian Information Criterion
(BIC). A recent alternative uses component-wise EM (CEM) and,
further, integrates model selection within CEM. Both approaches
are susceptible to finding poor solutions, the first due to initializa-
tion sensitivity of EM and the second due to the sequential (greedy)
nature of CEM. Deterministic annealing for clustering (DA) and
mixture modeling (DAEM) provide potential for avoiding local
optima. However, these methods do not encompass model se-
lection. We propose a new technique with positive attributes of
all these methods: it integrates learning and model selection, per-
forms batch optimization over components, and has the character
of DA, with the optimization performed over a sequence of de-
creasing temperatures. Unlike standard DA, with the partition en-
tropy reduced as the temperature is lowered, our approach reduces
entropy of binary random variables that express whether each com-
ponent is active or inactive. At low temperature, the method
achieves explicit model order selection. Experiments demonstrate
favorable performance of our method, compared with several al-
ternatives. We also give an interesting stochastic generative model
interpretation for our method.

1. INTRODUCTION

Learning and model selection in finite mixture models and un-
supervised clustering with estimation of the number of clusters
are longstanding problems, albeit ones of great continuing inter-
est, in the statistics and pattern recognition communities. There is
a vast literature on clustering and cluster validity procedures for
choosing between competing solutions. A number of techniques
have also been proposed for the related problem of choosing the
number of components (the model order) in finite mixture mod-
els, e.g.,[1],[2]. There are several aspects which contribute to the
difficulty of learning and model order selection in mixtures. First,
there is the choice of the criterion function (henceforth referred to
as the model cost) by which one evaluates the quality of solutions
and hence, by which one chooses the best model. A variety of
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model costs have been proposed, including Akaike’s Information
Criterion, Minimum Message Length (MML), Bayesian Informa-
tion Criterion (BIC), cross validation, as well as other measures.
To date, there is no full consensus on the proper cost [2].

Second, there is the learning procedure for estimating the pa-
rameters of the model. Learning is typically performed via the
Expectation-Maximization (EM) algorithm whose virtue – guar-
anteed monotonic ascent in the likelihood function – also means
that the method only finds local optima of this function. The solu-
tion quality is thus (in some cases quite) sensitive to the parameter
initialization. If the model is well-learned, but at the wrong model
order, and poorly learned at the true order, the best model in the
sense of the model cost may very well be a solution at the wrong
order. Suboptimal learning can thus greatly contribute to errors
in model selection. In order to overcome problems of local op-
tima, for each model order one may need to re-run EM numerous
times based on random parameter initialization and then select the
solution with greatest likelihood. The saved solutions at different
orders can then be compared in terms of the model cost. However,
this procedure may be quite computationally demanding.

Finally, there is the question of whether one should perform
learning followed by model selection or, alternatively, integrated
learning and model selection, e.g. [1]. In the latter case, the pa-
rameters and the model order are jointly chosen to minimize the
model cost. Integrated learning and model selection can somewhat
mitigate the local optima sensitivity of EM [1],[3]. For example,
in [3], it was found that better solutions at a given order are gen-
erally obtained if component annihilations (those consistent with
decreases in the model cost) are embedded within EM iterations.
Essentially, starting from a large model order, integrated learning
and component pruning can remove poorly initialized components,
thus mitigating suboptimal initializations. While the approach in
[1] does integrate learning and model selection, the learning algo-
rithm is of necessity (based on the particular choice of model cost)
not the batch EM algorithm, but rather the component-wise EM
(CEM) algorithm. This is a sequential (greedy) algorithm which
optimizes over one component at each step. Greedy optimization
techniques generally increase sensitivity to initialization and to the
order in which the parameters are visited. Another issue with [1]
is the choice of model cost. [1] minimizes the following criterion
based on MML:

L(θ,Y) =
N

2

∑
m:αm>0

log
Mαm

12
+

knz

2
log

M

12

V - 4570-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



+
knz(N + 1)

2
− log p(Y|θ)

where N is the number of parameters specifying each component,
M the number of samples in the data set Y , knz the number of
components with non-zero mass, and αm the mass for component
m. Experimentally, we have found that this tends to overestimate
the number of components, due to the term log(M αm

12
), which

contributes negatively to the cost if the mass is sufficiently small.
Thus, this cost favors the existence of some components with small
mass. On the other hand, BIC tends to underestimate the order.
This issue is discussed further in our experimental results.

While EM and CEM are both susceptible to finding poor solu-
tions, deterministic annealing (DA) techniques aim to avoid local
optima when learning clustering [4] and mixture model [5] solu-
tions. However, the DA framework does not include model selec-
tion – for the method in [4], the number of clusters will continue
to grow as the temperature is lowered unless a hard ceiling is im-
posed on the cluster number. Likewise, at the limiting temperature,
the cost minimized by [5] is the negative log likelihood – this can
always be further decreased by adding new mixture components.

Here, we introduce a new method that incorporates positive at-
tributes from each of the previous methods. Our method integrates
learning and model selection, performs batch optimization over the
components, and has the character of deterministic annealing, with
the optimization performed over a sequence of decreasing “tem-
peratures”. We do not propose a new model cost. Our approach
can be implemented for a number of existing costs. In this work,
we have used BIC. Our approach differs from existing DA meth-
ods in its ability to directly estimate the model order, as well as
in several other respects elaborated in the sequel. In section 2, we
develop our new method. In section 3, we provide experimental
comparisons. The paper concludes with future work.

2. FORMULATION

Consider an (at most) K-component mixture density function,

g(x) =

K∑
j=1

vjαjfj(x|θj) (1)

with fj(·) a component density specified by a parameter set θj ,
0 ≤ αj ≤ 1 the component’s mass, vj ∈ {0, 1}, and with the
constraint

∑K

j=1
vjαj = 1. The {vj} indicate which components

participate in the mixture. Denote the full parameter set by Θ =
{{θj}, {αj}, {vj}}. Suppose we wish to choose Θ to minimize
the BIC model cost for a given data set {xi, i = 1, . . . , M}:

BIC(Θ) =

K∑
j=1

vj
Nj

2
log M −

M∑
i=1

log

K∑
j=1

vjαjfj(xi|θj), (2)

constrained by
∑K

j=1
vjαj = 1. Here, Nj is the number of free

parameters for component j. 1

There are several barriers to minimizing (2):

1. sensitivity to parameter initialization and, thus, susceptibil-
ity to finding poor local optima, as previously discussed.

1In writing (2) it is assumed that each datum is generated independently
according to the mixture.

2. The coupling of the {vj} through the constraint.

This latter difficulty precludes pure batch optimization, with the
{vj} updated in parallel, independent of one another, since this
approach cannot ensure that vj = 0, j = 1, . . . , K does not oc-
cur, i.e., that all components do not “drop out”. One valid opti-
mization strategy, proposed in [3] in a different learning context,
involves an alternating minimization, with an EM step for optimiz-
ing {{θj}, {αj}} given fixed {vj}, and with a sequential cyclic
step for optimizing the {vj} given fixed {{θj}, {αj}}. While this
approach was found to be effective in [3], it is sensitive to initial-
ization and thus to finding poor local optima.

Alternatively, we next propose a DA-based approach. Accord-
ingly, we now let Vj ∈ {0, 1} be a random variable, with associ-
ated probabilities Pj ≡ Prob[Vj = 1], indicating the probabil-
ity that component j is active. Suppose we directly write down a
probabilistic generalization of (2), i.e.,

B̃IC(Θ̃) =

K∑
j=1

Pj
Nj

2
log M−

M∑
i=1

log

K∑
j=1

Pjαjfj(xi|θj), (3)

where Θ̃ = {{θj}, {αj}, {Pj}}. We will not impose the con-
straint

∑K

j=1
Pjαj = 1. Instead, we constrain Pj ∈ [0, 1] and∑K

j=1
αj = 1. This will be justified shortly. Let us check the

plausibility of (3). The term
∑K

j=1
Pj

Nj

2
log M makes sense –

this is the expected model penalty, based on the pmfs {(Pj , 1 −
Pj)}. 2 What about the term

∑M

i=1
log

∑K

j=1
Pjαjfj(xi|θj)?

This has the form of a log-likelihood function, with mass Pjαj for
component j. Unfortunately, with Pj ∈ [0, 1] and

∑K

j=1
αj = 1,

we have
∑K

j=1
Pjαj ≤ 1, i.e., the masses do not necessarily sum

to one. In fact, equality only occurs in the special case where
Pj = 1 for all j such that αj > 0. Accordingly, in general,
it does not appear that

∑M

i=1
log

∑K

j=1
Pjαjfj(xi|θj) is a log-

likelihood function. However, suppose we postulate one additional
component density f0(x|θ0) with θ0 chosen in the following spe-
cial way: θ0 is such that f0(xi|θ0) ≤ ε, i = 1, . . . , M , with ε a
very small value. This is easily achieved in principle, e.g., in the
Gaussian density case if the mean µ0 is positioned far outside of
the convex hull of the data, and with the variance σ2

0(l) in each
direction (l) chosen to be small. Clearly,

L =

M∑
i=1

log(

K∑
j=1

Pjαjfj(xi|θj) + (1 −
K∑

j=1

Pjαj)f0(xi|θ0))

(4)
is a valid log-likelihood. Moreover, with θ0 chosen to satisfy the ε
constraints, and with ε made arbitrarily small, we have that

L ≡ L(Θ̃) =

M∑
i=1

log

K∑
j=1

Pjαjfj(xi|θj). (5)

I.e., the term in (3) is a log-likelihood if the mass fraction (1 −∑K

j=1
Pjαj) is reserved for additional components with negligi-

ble likelihood of producing the {xi, i = 1, . . . , M}. The log-
likelihood function (4) (essentially (5)) is consistent with the fol-
lowing stochastic generation of the data.

2With probability Pj , component j is active, and the cost of its param-
eters is incurred in this case.
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For each sample:

1. Randomly select a component according to the mass distri-
bution {Pjαj , j = 1, . . . , K, (1 − ∑K

j=1
Pjαj)}.

2. If component m ∈ {1, . . . , K} is chosen, generate x ac-
cording to fm(x|θm); else, generate x according to f0(x|θ0).

Clearly if
∑

j
Pjαj < 1 and f0(xi|θ0) < ε, ∀i, with ε arbi-

trarily small, then as M grows the model becomes a highly im-
probable generator for the data set ! Accordingly, if we would like
this model to be a good explanation for the data, we need to choose∑

j
Pjαj = 1. Let us consider an optimization procedure which

ultimately satisfies this constraint and, moreover, ultimately also
satisfies Pj ∈ {0, 1} , i.e., Pj = vj . Relaxing these constraints at
the outset will allow us to define a deterministic annealing proce-
dure useful for avoiding local optima of the cost BIC(θ).

We first define the sum of entropies:

H = −
∑

j

(Pj log Pj + (1 − Pj) log(1 − Pj)), (6)

which measures the level of average uncertainty in whether com-
ponents are active or inactive. We can then pose the constrained
minimization problem:

min
Θ̃={{θj},{αj},{Pj}}

B̃IC(Θ̃) subject to H = H0. (7)

The associated unconstrained Lagrangian objective function is F =

B̃IC(Θ̃)−TH , with T a Lagrangian multiplier. At a given T , the
problem is thus minΘ̃ F . At high T , we maximize H , yielding
Pj = 1/2, ∀j and a set of remaining parameters

{{θj}, {αj}} = arg min
{α′

j
},{θ′

j
}
B̃IC({α′

j}, {θ′
j}, {Pj})|{Pj= 1

2 }

= arg max
{α′

j
},{θ′

j
}
L({α′

j}, {θ′
j}, {Pj})|{Pj= 1

2 }.(8)

As T (interpretable as ‘temperature’) is lowered, the constraint on
high entropy is relaxed. The model penalty term

∑K

j=1
Pj

Nj

2
log T

thus begins to impart an influence, forcing the pmfs {Pj , 1 − Pj}
to skew either towards more probable “activity” or “inactivity” as
the components still seek to best fit the data. Ultimately, at zero
T , we are directly minimizing B̃IC(Θ̃), generally achieved by
Pj → vj ∀j. Moreover, it will be seen (shortly) from the asso-
ciated re-estimation equations that as Pl → 0 for some l, we also
have that αl → 0. Thus, with

∑K

j=1
αj = 1 always enforced,

we have that 1 − ∑K

j=1
αjPj → 0, i.e. our desired constraint∑K

j=1
αjPj = 1 is satisfied at zero T . Essentially, as T is low-

ered, there is greater and greater impetus to explain the data while
also accounting for the penalty. This necessitates “stealing” more
and more mass from (the deficient) component θ0. At T = 0, all
mass concentrates on “active” components.

We thus suggest a procedure akin to a deterministic anneal-
ing algorithm, optimizing F starting from high T , and tracking
the solution through a sequence of decreasing temperatures. This
method differs from standard DA in several important respects:
1) In DA, it is the partition entropy (associated with probabilis-
tic assignments of points to clusters) that is lowered, whereas we
lower the entropy of binary random variables indicating whether

components are active or inactive.
2) In standard DA, the number of components grows via a se-
quence of phase transitions and the solution at high T is inde-
pendent of initialization. In our approach, we start with large K
(larger than the ‘true’ model size) and at high T the solution is a
(locally optimal) maximium likelihood estimate based on these K
components3. Accordingly, at high T there is dependency on ini-
tialization. As T is lowered, however, poorly chosen initial com-
ponents are gradually removed. If K is made sufficiently large,
then the annealing process conducts a search over a rich set of
candidate components and the solution at low T should be largely
insensitive to the initialization.
3) Standard DA [4],[5] does not provide a way to do model selec-
tion, whereas our annealing method automatically achieves model
selection at low T .
Minimization at a given temperature:

With the {Pj} fixed, the remaining parameters can be mini-
mized directly via the EM algorithm. For example, if fj(·) are
multivariate Gaussian densities, we have the (almost) familiar EM
equations for masses, means, and covariance matrices:

α
(t+1)
j =

1

M

∑
i

P (j|xi)
(t) (9)

m
(t+1)
j =

∑
i
xiP (j|xi)

(t)∑
i
P (j|xi)(t)

(10)

Σ
(t+1)
j =

∑
i
(xi − mj

(t+1))(xi − mj
(t+1))TP (j|xi)

(t)

∑
i
P (j|xi)(t)

(11)

where

P (j|x)(t) =
P

(t)
j α

(t)
j fj(x|θ(t)

j )∑
k

P
(t)
k α

(t)
k fk(x|θ(t)

k )
(12)

Note that from (9) and (12), it is clear that αj → 0 as Pj → 0.
One can also write down fixed point iterations(FPIs) for the

{Pj} parameters. These equations can be obtained starting from
the necessary optimality conditions ∂F

∂Pj
= 0 ∀j. However, these

FPIs, although typically well-behaved, are not guaranteed to de-
scend in F . Even so, we have used these FPIs to good effect in
our simulations. Alternatively, Pj can be parameterized using a
softmax function, i.e. Pj = eλj /(1+ eλj ), λj real, with the {λk}
chosen to minimize F via gradient descent. Thus, at each T , we
perform 1) EM and 2) gradient descent on {λj}, alternately, until
a convergence criterion is met. Then T is lowered.

3. EXPERIMENTAL RESULTS

We have compared our approach, denoted DAMS (deterministic
annealing-based model selection), with two other methods. One is
the standard method where EM is run for different model orders,
with the solution with the lowest model cost saved. We denote this
method by EMS (exhaustive model selection) and use BIC as the
model cost. The other method, from [1], is denoted CEM. We used
2-dimensional synthetic data sets for evaluation, each with 900
points. One type has 3 Gaussian components. Each element in the
means of these components is randomly generated by a Gaussian

3With Pj = 1
2
∀j at high T , the objective reduces to standard maxi-

mum likelihood, as indicated in (8).
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distribution N(0, 1). The covariance matrix is C = AT A, where
each element in A is also randomly generated by a Gaussian distri-
bution N(0, 1). We constrain |C| > 0.001. The mass probabilities
of these three components are randomly generated based on a uni-
form distribution. The other type has 6 Gaussian components, with
each mean element generated by N(0, 4), and 0.01 < |C| < 0.1.
The second type of data set has a clearer cluster structure. We tried
90 data sets of the first kind and 20 data sets of the second. Tables
1 and 2 display the results. If the estimated model order is smaller
than the true one, the fraction of points in error (’average error’)
is calculated by mapping each estimated component (and all the
points it owns in a MAP sense) to the closest true component; else
the error is calculated based on a mapping of each true component
to the closest estimated component. In our method, we chose the
initial temperature as 100, the temperature scaling factor as 0.7,
and the final temperature as 0.1 because the “active” probabilities
have already converged at this temperature.

EMS vs. DAMS: With many random initializations for varying
the number of components, EMS can work very well. However,
the computation is prohibitive. For roughly fair computational
comparison, we restrict the number of initializations to one for
each model order. We exhaustively explored the orders from 1 to 8
for the data sets with 3 components, and from 3 to 12 for the data
sets with 6 components. This still needs ∼ twice the computation
time of our method. From Table 1, we can see EMS performs well
except that it has a larger average BIC model cost compared with
DAMS. However, when the number of components is 6, EMS with
one initialization finds more local optima and thus shows a poorer
performance in Table 2.

CEM vs. DAMS: Here we used source code for CEM provided
by Figueiredo[1]. First, we tried the failure case mentioned in [1],
where one mass is much smaller than the other three. Unlike CEM,
our method finds the true solution. Next, for the first synthetic
data set type, both methods started from 15 initial components.
For the second type, DAMS started from 20 initial components,
while CEM started from 30 initial components. CEM is still much
faster than DAMS (roughly 10 times). From Tables 1 and 2, our
method estimates the model order better than CEM. CEM tends to
overestimate the model order, mentioned in the introduction, while
our method tends to underestimate the order. This is attributable
to use of the BIC criterion. Interestingly CEM has lower average
error ratio than our method in Table 1. The reason is that for CEM
in the overestimated case, the extra components often have small
masses. These components do not affect the error ratio much. On
the other hand, for DAMS in the underestimated case, the error
ratio increases significantly because some whole components may
be in error. The situation is different in Table 2, because each com-
ponent has a relatively small mass. Thus, the loss of some whole
components does not affect the error ratio greatly. Accordingly,
the error ratio is lower for DAMS than CEM in Table 2.

4. FUTURE WORK

While we have addressed integrated learning and model selection
here, more generally, our learning strategy provides an effective
way to optimize over a mixture whose components may belong
to one of several types or “flavors”. Here, we considered ‘active’
and ‘inactive’ flavors. Alternatively, as in [3], we could use our
approach to optimize components that generate data from either

Table 1. Results for data sets with 3 components.
EMS DAMS CEM

1 2 5 0
2 22 28 9
3(true) 60 57 42
4 5 0 14
5 1 0 9
6 0 0 9
7 0 0 3
8 0 0 1
9 0 0 1
9 0 0 1
average error 0.1807 0.1888 0.1866
BIC 2673.1 2641.9

Table 2. Results for data sets with 6 components.
EMS DAMS CEM

4 1 2 0
5 4 6 3
6(true) 8 12 11
7 7 0 1
8 0 0 1
9 0 0 0
10 0 0 1
11 0 0 0
12 0 0 3
average error 0.1469 0.1377 0.1663
BIC 2640.3 2633.7

known classes or unknown classes. This is useful in the context of
discovering new classes in mixed labeled/unlabeled data sets [3].
Finally, our approach could be used to optimize a generalized mix-
ture model [6], where each component may be drawn from one of
several candidate parametric density families. These applications
will be investigated in future work.
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