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ABSTRACT

The detection of tandem repeats is important in biology
and medicine as it can be used for phylogenic studies and
disease diagnosis. This paper proposes two techniques for
detecting approximate tandem repeats (ATRs) in DNA se-
quences. First, an evolutionary force heuristic is proposed
to merge interspersed perfect tandem repeat sequences into
an ATR structure. Next, a more general method is pre-
sented using a product spectrum of Fourier nucleotide sub-
sequences to detect hidden periodicity. The Fourier method
is sensitive to ATRs and is robust in the presence of substi-
tutions, insertions, and deletions.

1. INTRODUCTION

Repetitive structures are present in over one-third of the
human genome [1]. Genomic repeats can be categorized into
two classes: transposable interspersed repetitive elements
i.e., Long and Short Interspersed Elements (LINEs, SINEs),
and tandem repeats. The focus of this paper will be on the
identification of approximate tandem repeats (ATRs).

Tandem repeats (TRs) are defined as two or more con-
tiguous approximate copies of a pattern of nucleotides. Tan-
dem repeats have been known to play important roles in
human disease, regulation, and evolution. Fourteen doc-
umented trinucleotide repeat expansion diseases (TREDs)
that affect humans are listed in Table 1.

Table 1. Trinucleotide Repeat Expansion Disorders.
Name of Repeat Normal Mutant
Disorder Pattern Copies Copies
DRPLA CAG 6-35 49-88

Huntington’s CAG 11-34 40-120
Kennedy’s CAG 9-36 38-62

Type1 SCA1 CAG 25-36 41-81
Type2 SCA2 CAG 15-24 35-59
Type3 SCA3 CAG 13-36 62-82
Type6 SCA6 CAG 4-16 21-33
Type7 SCA7 CAG 4-19 37-306

Fragile X CGG 6-54 70-230
Fragile XE GCC 6-35 > 200

Friedreich’s Ataxia CGG 6-54 > 100
Myotonic Dystr. CTG 5-27 50-1000
Type 8 SCA8 CTG 16-34 110-250

Type 12 SCA12 CAG 7-28 28-66

The expansion of the trinucleotide repeat results in an-
ticipation or progression in severity of the disorder through
each generation. In general, there is a correlation between
the size of the expansion and the severity of the pheno-
type. Furthermore, instabilities in dinucleotide repeat se-
quences have been observed in colon cancer [2]. Some bio-
logical mechanisms for the expansion of repeats include: de-

fect in mismatch repair system, polymerase slippage during
replication, and genetic instability of some DNA structures
[3, 4].

Repeats play a role in gene regulation when present in
regions with transcription factors [5]. In addition, the evo-
lutionary history of an organism can be mapped by identi-
fying duplication events of repeats over time.

An abundance of TR patterns have been located in
NIST’s Short Tandem Repeat DNA Database (STRBase)
[6] and are used in human gene mapping, linkage studies,
and forensic DNA fingerprinting analysis [7]. The detec-
tion of repeats is also important for similarity searches as
repetitive structure tends to confuse sequence alignment al-
gorithms.

Signal processing methods offer great promise in analyz-
ing genomic data as evidenced by research in the area in
recent years [8, 9, 10].

It is well known that the identification of perfect tandem
repeats can be found in approximately linear time by the
use of string algorithms based on suffix tree approaches [11].
ATRs pose more of a challenge as substitutions, insertions,
and deletions through millions of years of evolution make
the repeats harder to detect. Recently algorithms have been
proposed [12, 13, 14], each with its own limitations and as-
sumptions. In [12], the period of the repeat is limited to
less than 2000 base pairs (bp) as of version 3.21. In [14],
there are practical memory constraints resulting from the
pattern extension algorithm. Although there are no limita-
tions on the period size in [13], the algorithm does not deal
with insertions or deletions (indels) directly, and as such,
certain repeats with indels can be missed. In this paper,
we propose two possible approaches for detection of ATRs
in DNA. First, a heuristic method, called the evolutionary
force heuristic, is proposed that builds ATR regions by as-
sociating neighboring perfect tandem repeats. Next, a more
general Fourier analysis based method is proposed which is
sensitive in detecting repeats with high percentage of in-
dels and does not require the user to specify the number of
allowed mismatches when searching for ATRs.

2. EVOLUTIONARY FORCE HEURISTIC

In the introduction section, it was noted that the problem
of finding perfect tandem repeats (PTRs) in DNA has been
well studied and that there currently exist efficient solu-
tions for finding PTRs. However, the theory of evolution
predicts that over time random mutations will occur in the
DNA code [15]. Typically, the mutation rate for DNA repli-
cation can range from about 10−9 to 10−7. DNA replication
occurs when cell divisions take place. Consider that, in hu-
mans, it is estimated that approximately 1016 cell divisions
occur in our lifetime [15]. Thus, it is reasonable to hy-
pothesize that there exist regions of approximate repetitive
structures, or approximate tandem repeats, in the genetic
code that may have diverged from perfect repeats over time
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through the mechanism of evolution. In fact, one may won-
der if stretches of PTRs that are in close proximity to each
other were once joined together as part of one longer PTR
sequence. In this section, a method of associating PTRs in
close proximity is proposed that gives rise to ATR struc-
tures.

First, some mathematical preliminaries and notational
matters are necessary to facilitate proper formulation of the
problem. Let Σ be a DNA sequence of length N , Σ =
(s1, s2, . . . , sN ), sk ∈ D = {A,T ,G,C}. For notational
convenience, the elements in Σwill be written without the
commas. Furthermore, let DN represent the space of all
possible DNA sequences of length N . A subsequence, σ , of
Σ is defined as

σij = Σ([i, . . . , j])� (sisi+1 . . . sj), for 1 ≤ i ≤ j ≤ N.

A perfect tandem repeat (PTR) in Σ is defined as fol-
lows. Let σ be a subsequence of Σ . We define σ to be
a PTR region of Σ if there exists a subsequence σ(P ) of σ ,
σ(P) = (s1s2 . . . sp) ∈ DP such that σ can be written in the
following notation,

( s1s2 . . . sP︸ ︷︷ ︸
P nucleotides

)M � (s1s2 . . . sP s1s2 . . . sP · · · s1s2 . . . sP︸ ︷︷ ︸
(s1s2...sP ) repeated M times

).

The quantity P is the period of the repeat, and M is the
copy number of the repeat. Now the PTR finding prob-
lem can be stated precisely: find the set of all subsequences
{σi1j1 , σi2j2 , . . . , σikjk} for which the definition of PTR
given above holds. Note that in practice, the sequence
length N can be very large. Thus, the existence of PTR
patterns with very large periods cannot be ruled out.

At this point, observe the following:

1. The problem of finding PTRs in a sequence can be
defined precisely.

2. There exist algorithms for finding PTRs efficiently.

3. It is possible for PTRs to degenerate into ATRs over
time as the result of random mutations.

Given these three observations, a first attempt at finding
ATRs is possible by associating appropriate PTRs that are
close to each other by some heuristic method. We propose
the evolutionary force heuristic, to be described next.

Two subsequences, σi1j1 and σi2j2 that are PTRs are said
to be of the same type if they have the same period P and
there exists a cyclic permutation fP of σi2,i2+P−1 such that

σi1,i1+P−1 = fP

(
σi2,i2+P−1

)
. Furthermore, the mass, mk,

of σikjk is defined as, mk = jk − ik +1. The center of mass,
ck, of a subsequence σikjk is defined as, ck = (ik + jk)/2.
Given σi1j1 and σi2j2 , two PTR subsequences of Σ of the
same type, define the evolutionary force Fε between the
PTRs as,

Fε =
m1m2

d2
12

, d12 = |c1 − c2|. (1)

In the evolutionary force heuristic algorithm, two PTR sub-
sequences, σi1j1 and σi2j2 , of the same type with sufficient
evolutionary force attraction will be merged into an ATR
subsequence, σ(AT R) = σi1j2 . The algorithm will be stated
in more detail shortly. First, observe that the evolutionary
force quantity, Fε, has the following two properties.

Property 1: 0 ≤ Fε ≤ 1.

Proof: Since m1 > 0, m2 > 0, we must have Fε ≥ 0
(equality in the limit as d12 → ∞). Now, note that

d12 ≥ (m1+m2)
2

. From properties of arithmetic and geo-
metric means, we observe,

d2
12 ≥ (m1 + m2)

2

4
≥ m1m2,

with equality in the above equation if and only if m1 =

m2 = (m1+m2)
2

. Combining this with eq. (1), we conclude
that Fε ≤ 1.

Property 2: Percent of non-PTR nucleotides, PG, in σi1,j2
after the first merge is given by,

PG =
d12 − m1+m2

2

d12 + m1+m2
2

. (2)

The functional dependence of F12 and PG is shown in
Fig. 1. For a threshold of about tF = 0.08, no two PTR
subsequences will be merged with more than about 66.7 per-
cent non-PTR nucleotides. The algorithm for constructing
ATRs based on the evolutionary force heuristic is summa-
rized in the list below.

1. Pick a maximum tolerable PG for which two PTRs will
be associated and merged as one.

2. With this value in mind, pick a threshold tF by observ-
ing Fig. 1.

3. For any two PTR subsequences, σi1j1 and σi2j2 , of the
same type such that i1 ≤ j1 ≤ i2 ≤ j2, compute the
evolutionary force, Fε, between them and compare with
the threshold tF . If Fε > tF , define the new ATR
subsequence as σ(AT R) = σi1j2 .

4. Update mass of the newly constructed ATR subse-
quences, recalculate the forces values between all re-
peats of the same type.

5. If converged (no more subsequences to merge), exit;
otherwise go to step 3.
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Figure 1. Functional dependence of F12 and PG

Using this method combined with a PTR detection al-
gorithm and testing on the human dystrophia myotonica-
protein kinase (GenBank accession number: NM 004409)
gives the interesting result of (AGAGAGAAGTGGCCA-
GAGAG) as an ATR subsequence. Note that many repeats
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(both PTR and ATR) were found, but omitted for the sake
of conciseness. The intention here was to present an ex-
ample of what sort of results can be expected using this
method.

In general, defining precisely what is meant by ATR is
somewhat difficult. For example, in [16], two criteria, ham-
ming distance and edit distance between adjacent periods,
are used in defining an ATR. In the case of hamming dis-
tance, a parameter in the algorithm, k, sets the number of
allowed mismatches between adjacent periods in an ATR.
The problem with using this definition of ATR is that the
appropriate choice of k depends on P . Thus, one must
somehow know in advance (or have a good guess) what
period repeats are going to exist in the sequence under con-
sideration.

The heuristic evolutionary force post-processing algo-
rithm presented in this section is convenient and easy to
implement. However, the evolutionary force criterion still
does not define precisely what is meant by an ATR (note
that property 2 is valid only in the first round of merg-
ing). In particular, this heuristic method is not as general
as other ATR finding algorithms such as [12, 13, 14]. A
more general approach to finding ATRs, or approximate pe-
riodicities, in DNA can be formulated by using the Fourier
product method, described in the next section.

3. FOURIER PRODUCT METHOD

Our objective here is to detect ATRs within an observation
window of length N . Since ATRs themselves may not be
strictly periodic, and “random” bases appear before and/or
after the ATRs, sensitivity of the method in detecting the
hidden periodicity must be high. We do not assume any
knowledge about the pattern that is being repeated, the
size (period) of the pattern, nor the location of the repeats.

Fourier based methods are natural for this kind of prob-
lems. We describe next, our proposed algorithm based on
a Fourier product spectrum.

Step 1. Convert the DNA sequence into four nu-
cleotide subsequences xA[n], xT [n], xG[n], xC [n].

Let xα[n] = 1 if character α is present at the nth po-
sition of the DNA sequence; xα[n] = 0 otherwise; α ∈
{A, T, G, C}. Therefore, xα[n] is an indicator sequence for
the presence or absence of character α in the DNA sequence.
For example, Table 2 shows the xα[n] components for DNA
sequence ‘ACTGCTAGCAAT’.

Table 2. Numerical Subsequences.
Σ A C T G C T A G C A A T

xA[n] 1 0 0 0 0 0 1 0 0 1 1 0
xT [n] 0 0 1 0 0 1 0 0 0 0 0 1
xC [n] 0 1 0 0 1 0 0 0 1 0 0 0
xG[n] 0 0 0 1 0 0 0 1 0 0 0 0

Step 2. Take (normalized) Fourier transform of the
mean removed processes.

Let mα = 1
N

∑N−1
n=0 xα[n] and calculate

Sα(f) =
1

N

N−1∑
n=0

(xα[n] − mα) e−j2πfn, (3)

for 0 ≤ f ≤ 0.5 and α ∈ {A, T, G, C}.
Step 3. Form the Fourier product spectrum

S(f) =
∏

α∈{A,T,G,C}
(|Sα(f)| + c), (4)

where c is a small positive constant. If a period P repeat
exists in the DNA sequence, S(f) should show a peak at f =
1/P . It is possible for S(f) to peak at f = 2/P, 3/P, . . . as
well, but we only need to pay attention to the fundamental
frequency. The period P can thus be inferred from the peak
location. The constant c is to prevent the nulling of S(f) if
a particular character is not part of the repeat pattern.

Step 4. Detection of the beginning and end of the
ATR regions.

Details are omitted here due to the space limitation.

In [10], a sum spectrum instead of a product spectrum
was proposed. Our experience is that the product spectrum
(4) is much more sensitive to ATRs, as we illustrate in the
following example.

Example 1. Consider the pseudo-DNA sequence:

ACTGACCGGACGC[ATGATGCTGATGATG]CTAC

Figure 2 shows the individual Fourier transform magnitudes
|SA(f)|, |ST (f)|, |SG(f)|, |SC(f)|, the product spectrum
S(f) (with c = 0.01), as well as the sum spectrum. There
was not a clear peak in any of the plots except for the
product spectrum. The peak in S(f) is located at f = 0.33,
indicating that a period P = 3 repeat is present in the DNA
sequence. Based on this information, we then determined
that the pattern tga was repeated 5 times at positions 14-28
with 1 substitution at position 20.
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Figure 2. From top to bottom: |SA(f)|, |ST (f)|,
|SG(f)|, |SC(f)|, the product spectrum S(f), and the
sum spectrum for the DNA sequence in Example 1.

Since multiplication is a nonlinear operation, it is ex-
pected that peaks are enhanced while the “noise floor” is
suppressed in a product spectrum. Our computer simula-
tions show that the product spectrum (4) is especially sen-
sitive to the presence of ATRs, and can tolerate up to 12%
of indels and up to 28% of substitutions.

Example 2. Next, we show the performance of the prod-
uct spectrum (4) on the Apis mellifera (bee) sequence (Gen-
Bank accession: AMU73928) given below:

CCCATGTCCCAGCGGCGTATTGCTTTGCATCGCGAACGCACTTTCAATGT
CCCAGCGGCGTATTGCTTCTATTTTATAAGTACCAGCTAAATTTTTTTTT
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TTTTTTTATAAGTACCAGCTAAAATTTTTTTTTTTTTTTTTTATAAGTAC
CAGCTAAAATTTTTTTTTTTTTTTTTTATAAGTACCAGCTAAAATTTTTT
TTTTTTTTTATAAGTTCCAGCGGCGTATTGCTTTCTGAAATTTAAAAAAA
AAAAAAAATTTTTTTTTAATAATATATTATATA

Figure 3 shows the individual spectrum |Sα(f)| and the
product spectrum S(f). Based on the product spectrum,
we were able to detect a length 35 ATR with an estimated
copy number of 5 at positions 65-256. This was consistent
with results found by [14, 12] at positions 72-221 and 72-209,
respectively. We show the ATR region using the “multiple
alignment” format produced below for positions 65-256 by
ClustalW v1.82 [17] (rows correspond to periods)

gctTctaTTTTATAAGTACCAGCTAAAtTTTTTTT------
---TTTTTTTTATAAGTACCAGCTAAAATTTTTTTTTT---
---TTTTTTTTATAAGTACCAGCTAAAATTTTTTTTTT---
---TTTTTTTTATAAGTACCAGCTAAAATTTTTTTTTT---
------TTTTTATAAGTtCCAGCggcgtaTTgcTTTcTgaa

We see that the repeats are approximate as there are
deletions (indicated by -) and substitutions (indicated by
lower case letters).

Imagine having to manually detect these ATRs! Sig-
nal processing techniques are especially useful for detecting
large patterns or patterns that are repeated few times.
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Figure 3. From top to bottom: |SA(f)|, |ST (f)|,
|SG(f)|, |SC(f)|, and the product spectrum S(f) for
sequence AMU73928.

4. CONCLUSIONS

In this paper, two methods have been proposed for the de-
tection of ATRs in DNA sequences.

The evolutionary force heuristic method inherently as-
sumes that PTR subsequences of the same type in close
proximity are already found. Then, it merges the PTR
seeds into a more general ATR structure. Since the evo-
lutionary force quantity is normalized as seen by property
1, it is easy to draw a threshold to decide on the merge.
It should be noted that this method identifies a subset of
all possible ATRs that occur in DNA sequences. However,
because the ATR regions identified are of a specific type,
perhaps they have a direct biological link to evolution?

A more general approach using the Fourier product of
nucleotide subsequences has shown strong robustness in de-
tecting ATRs, especially those with substitutions and in-
dels. In this method, the period to be detected in a given
DNA sequence is limited by the window length. However,
it offers a promising approach due to its high sensitivity in
identifying hidden periodicity in genomic data.
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