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ABSTRACT

This paper presents a new method for detecting EEG spikes.
The method is based on the time–frequency distribution of
the signal. As spikes are short time broadband events, they
are represented as ridges in the time–frequency domain. In
this domain, the high instantaneous energy of spikes allows
them to be distinguishable from the background. To detect
spikes, the time–frequency distribution of the signal of inter-
est is first enhanced to attenuate the noise. Two frequency
slices of the enhanced time–frequency distribution are then
extracted and subjected to the smoothed nonlinear energy
operator (SNEO). Finally, the output of the SNEO is thresh-
olded to localise the position of the spikes in the signal. The
SNEO is employed to accentuate the spike signature in the
extracted frequency slices. A spike is considered to exist in
the time domain signal if a signature of the spike is detected
at the same position in both frequency slices.

1. INTRODUCTION

Studying the behaviour of spikes in the electroencephalo-
gram (EEG) is important for detecting brain abnormality [1].
Despite the multitude of published papers on the analysis of
EEG, very few considered the spike events.

Spikes can be defined as transient signals, clearly dis-
tinguishable from the background activity with a pointed
peak. In EEG the duration of the spikes varies between 20
to 70 msec [1]. From signal processing point of view, spikes
are nonstationary short–time broadband signals with high
instantaneous energy [2]. Spike detection in nonstationary
environments, such as in the case of EEG, is a challenging
problem. Detection methods based on the assumption that
the background signal is stationary or quasi-stationary are
not useful in this type of environment [2, 3].

The nonstationarity of EEG makes time–frequency dis-
tributions (TFDs) a suitable tool for spike detection. As
spikes are short time broadband events, they are represented
in the TF plane as highly localised energy pattern especially
in the high frequency area as shown in Figure 1. Depend-
ing on the signal to noise ratio (SNR), the presence of noise
may prevent recognition and localisation of spikes.
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Fig. 1. A spike: (a) Time domain, (b) TF domain.

To deal with the noise and nonstationary problems, a
new two-stage spike detection technique is presented in this
paper. The first stage is a preprocessing stage whose goal is
to reduce the effect of the noise in the TF domain by using
a singular value decomposition (SVD)-based method [4].
The second stage is the detection stage. The detection pro-
cess uses the above-mentioned characteristics of spikes in
the TF domain along with the accentuating capacity of the
nonlinear energy operator (NEO) [2].

2. SPIKE DETECTION

2.1. Existing methods

There are several spike detection methods in the literature [2,
3, 5]. In [5], a rule–based method has been adopted for rec-
ognizing special features of spikes. The method is based
on the time domain information of the signal and has a
high good detection rate at the expense of high false alarm
rate [6]. In another study, the NEO has been employed for
spike detection in the EEG signal [3]. The output of the
NEO is proportional to the product of the instantaneous am-
plitude and frequency of the input signal, and hence high-
lights the spike events in the signal. A smoothed nonlinear
energy operator has been employed in [2] to detect spike
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events in EEG signals. This technique applies Barlett win-
dow to the output of the NEO for magnifying the local pointed
peaks. Consequently, the output of the SNEO can be con-
sidered as the instantaneous energy of the highpass filtered
version of a signal. However, the results show that this ap-
proach is sensitive to noise.

The NEO and SNEO techniques are based on the as-
sumption that the background signal is stationary. In fact,
these methods preprocess the signal for highlighting the non-
stationary spike events in a stationary background. These
methods have limited success for detecting spikes in signals
such as EEG where the background is nonstationary [7].
This shows the need for a spike detection method that takes
this characteristic into account.

Wavelet transforms (WTs) have been widely used for
analysing nonstationary signals [8, 9]. However, the WT
does not perform well in detecting spikes that are close in
time [8]. The problem is that for large scale, the time reso-
lution of the wavelets are wider than the width of the spikes.

2.2. TF-based spike detection method

Time–frequencydistributions are suitable for analysing non-
stationary patterns in a nonstationary environment such as in
the case of EEG spikes. The extension of spikes signatures
into the high frequency area of the TF domain, as well as the
high instantaneous energy of spikes allow them to be distin-
guished from the background. In addition, at higher fre-
quencies in the TF domain, spikes are more localised than
at lower frequencies. Consequently, using high frequencies
of the TFD is more suitable for spike detection. Therefore,
before the actual spike detection process, the signal is first
filtered using a high-pass filter.

In order to reduce the cross-terms, introduced by the
quadratic nature of TFD, a reduced interference time-frequency
distribution (RID) is used. A number of RIDs exists in
the literature. In this study, the Choi-Williams distribu-
tion (CWD) has been adopted [10]. This distribution has
been shown to outperform other distributions in represent-
ing spiky signals [11].

To attenuate the effects of noise on the TFD of the sig-
nal, the SVD-based technique proposed in [4] is used. This
technique is based on low pass filtering the singular vectors
associated with the matrix representing the TFD of the sig-
nal under analysis. It has been shown that reconstructing
the TFD of the signal using filtered singular vectors signif-
icantly reduces the noise effect without altering the basic
structure of the TF patterns of the signal [4].

Once the TFD of the signal has been enhanced, two rela-
tively high frequency slices are extracted. If both frequency
slices have any spike signature at the same position, the re-
lated time domain signal is judged to contain spike at that
position. The use of only two frequency slices instead of

the whole TF domain allows a significant reduction of com-
puting time while not sacrificing detection performance. It
has been noticed that the signatures of the spikes in these
frequency slices are well localised in time. To further am-
plify these signatures, the NEO is applied to the frequency
slices. Assuming that the NEO,

�
, is applied to the time-

series � � � � representing a given frequency slice, the output
is given by:

� 	 � � � � � 
 � � � � � � � � � � � � � � � � � �
The local peaks at the output of the NEO that are higher

than a predefined threshold are considered as an indication
of the existence of a spike at that location in the time-series.
In [2] the authors have shown that using Barlett window ap-
plied to the output of the NEO can help in better localising
the local maxima. The process that combines the NEO and
the windowing is called smoothed nonlinear energy opera-
tor.

Applying the SNEO on the frequency slices can bet-
ter highlight the signature of spikes than applying it on the
related time domain signal. This is due to the fact that
frequency slices have less noise and background activities
comparing to the related time domain signal.

3. EXPERIMENTAL RESULTS

The efficiency of the presented spike detection method has
been evaluated using both synthetic signal and real newborn
EEG data. The results are compared with the results ob-
tained when the SNEO is applied directly to the raw time-
series as suggested by [2].

3.1. Synthetic Signal

For the purpose of evaluating the performance of the pro-
posed method we use the following synthetic signal [2]:

� � � � 
 " � � � � # � � �
where " � � � and # � � � are the background signal and the spike
train set, respectively. The background is chosen:

" � � � 
 & ( * � , � � � & ( * � 1 , � � 3 � � & ( * � 6 , � � � � � � �
where , 
 1 = > ? @ , 3 
 = > 1 and � � � � is white Gaussian
noise . The spikes are distributed randomly over the back-
ground signal. The spikes are taken as triangular symmet-
ric pulses with random signs and amplitudes uniformly dis-
tributed between 2.5 and 5. The signal is sampled at a rate
of 128 Hz ( C E 
 � 1 I J L ). Figure 2(b) shows 250 samples
of � � � � with SNR=5 db. This signal includes 8 spikes rep-
resented in Figure 2(a) with a randomly varying duration of
3 to 9 samples. The duration of each spike meets the EEG
spike duration limits (20 to 70 msec).
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Fig. 2. (a) Spike train, (b) Signal with spikes.
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Fig. 3. TFD of signal represented in Fig. 2(b): (a) original TFD,
(b) Enhanced TFD.

To localise the spike events in � � � � , the signal is firstly
mapped into the TF domain. To reduce the effect of noise
the TFD is preprocessed (see Fig. 3). Then, two frequency
slices of the enhanced TFD are extracted. In this study, the
frequency slices are extracted close to � 	 
 � 
 � and 	 
 � � .
The SNEO is applied to the two frequency slices (see Fig-
ure 4(a) and 4(b)). The output of the SNEO is thresholded
to isolate the most energetic areas. The threshold value, � ,
is chosen as � � � � � � � where � � is a vector representing the
frequency slice and � is the median function. If the duration
of a detected spike on the frequency slices does not meet the
spike duration limits, the detected spike is rejected.

The result of applying the TF–based technique to � � � �
for spike detection is shown in Figure 4(c). As it can be
seen, all of the eight spikes have been successfully detected.
The result of applying the SNEO technique on the same sig-
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Fig. 4. TF spike detection on signal represented in Fig. 2b: (a)
Frequency slice at � �  " � $% ' , (b) Frequency slice at � �  � $' , (c)
Detection results.
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Fig. 5. The SNEO output to signal represented in Fig. 2(b)

nal in time domain is shown in Figure 5. The figure shows
that the technique has one false and one missed detections.

3.2. EEG Signal

For evaluating the performance of the TF–based spike de-
tection on real signals, the EEG of newborn baby has been
used. The data have been sampled using ) * , . / 0 1 3 . Four
seconds of the data are shown in Figure 6. In this figure the
position of the spikes has been depicted by the arrows.

The TF-based and the SNEO techniques have been sep-
arately applied to the EEG signal and the results are shown
in Figures 7 and 8, respectively. All of the spikes have been
successfully detected using both the SNEO and TF-based
techniques. However, Figure 6 shows that the SNEO has
four false detections.

4. CONCLUSION

This paper presents a new EEG spike detection technique.
The technique is based on the analysis of the signal in the
time–frequency domain. The results of using this technique
on both the synthetic and real signals have shown that the
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Fig. 6. Four seconds of newborn EEG signal. The spike locations
are pointed by arrows.
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Fig. 7. Spike detection results using the TF-based technique ap-
plied on signal in Figure 6: (a) The first extracted frequency slice,
(b) The Second extracted frequency slice, (c) The TF detector’s
output.
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Fig. 8. The SNEO detector’s output for signal represented in
Fig. 6. False detected spikes are depicted by arrows.

proposed technique outperforms the original method based
on time domain analysis.
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