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ABSTRACT

We present a method for the estimation of possible cell cyclic
elements in mis-sampled microarray data. Accurate assess-
ment of the frequency content of microarray data gives in-
sight into genes which could be cell-cycle regulated. Cell
cycle regulation is one component of the complex network
of genetic regulatory processes and is especially relevant to
the study of cancer. As cDNA microarray experiments in-
volve human sampling of cell populations, slight variations
in the sampling times invariably occur. Here, we propose es-
timating the frequency content of microarray data using the
recent robust Capon estimator, and formulate a suitable un-
certainty region to minimize over. The estimator is shown
to yield robust estimates with real microarray data and to
identify cell-cyclic genes that elude both the traditional Pe-
riodogram and the Capon spectral estimator.

1. INTRODUCTION

Genes provide a blueprint for the manufacture of protein.
Typically, one gene codes for a single protein (or a family
of similar proteins). The actual process whereby a protein
is created is known as gene expression. The large scale
measurement of protein levels from specific genes is not
yet possible. However, microarrays facilitate the measure-
ment, on a genome-wide scale, of relative levels of mes-
senger RNA (mRNA) from specific genes [1]. mRNA is a
necessary intermediary of gene expression and is currently
the best indicator of gene expression levels on a large scale.
Microarrays are flexible devices; one common experimental
procedure is to subject cells to a physical or chemical stim-
uli and then sample the cell population over time. At each
time point, the relative mRNA levels are thereby measured
with a microarray. Such an experiment gives a time series
(time course) of mRNA ratios for each gene. Hence, if each
microarray contains P gene sample spots and N microar-
rays are used, one for each time point, the results can be
expressed in a P×N matrix of gene expressions over time.
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Several recent studies used data from such experiments to
estimate the cell cycle frequency and then determine genes
that were likely to be cell-cycle regulated [2, 3]. Regula-
tion is the term given to the complex network of processes
governing gene expression. The cell cycle is the natural pro-
cess of cell growth and division; some genes are known to
be regulated in a cyclic fashion, coincident with the cell cy-
cle. One method of determining genes which could be cell
cycle regulated is through spectral estimation. Dominant
spectral peaks at the frequency of the cell cycle provide evi-
dence that the regulation of a particular gene is linked to the
cell cycle. In [4], the amplitude spectrum Capon spectral
estimator was used to rank genes by their frequency content
at the cell cycle. This approach is hampered by possible
errors in the temporal sampling of the cell population; the
sampling of the cell population is typically performed by
human operatives in a lab. As a result, slight variations in
the sampling times invariably occur. For example, in one
major study [2] the sampling was performed every seven
minutes for one experiment but possible errors were esti-
mated to be up to twenty seconds [5]. The robust Capon
beamformer (RCB) presented in [6, 7] is able to determine
the power in a signal of interest given imprecise knowledge
of the array steering vector. As the beamforming problem is
directly analogous to spectral estimation, the steering vector
uncertainty is equivalent to uncertainty in the Fourier vector
in the case of spectral estimation. Here, we show that errors
in temporal sampling can be represented as an uncertainty
disc around the Fourier vector. Let the ideally sampled data
be represented as

y(t) = αωeiωt +n(t) , (1)

for t = 1, . . . ,N, where αω is the (complex) amplitude of
a generic sinusoidal component at frequency ω, where ω ∈
[0,2π], and n(t) is an additive zero mean coloured noise pro-
cess containing component power at frequencies other than
ω (see, e.g., [8]). Introducing sampling errors, we rewrite
(1) as

y(t) = αωeiω(t+∆t ) +n(t) , (2)
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where ∆t is a random variable representing the sampling er-
ror at time t. Here, we make the natural assumption that
{∆t}N

t=1 are independent identically distributed (IID) vari-
ables, with ∆t ∼ N

(
0,σ2

∆
)
, where σ2

∆ models the level of
uncertainty in the sampling process. Let

yL(t) =
[

y(t) y(t +1) . . . y(t +L−1)
]T

= αωãLe
iωt + eL(t) , (3)

for t = 1, . . . ,N − L + 1, where (·)T denotes the transpose
operator,

ãL = aL �a∆

aL =
[

1 eiω . . . eiω(L−1)
]T

a∆ =
[

eiω∆t eiω∆t+1 . . . eiω∆t+L−1
]T

with � denoting the Schur-Hadamard (elementwise) prod-
uct. To form the uncertainty region created by the sampling
uncertainty, we proceed to evaluate the expected value and
the covariance matrix of ãL. The expectation of ãL is

ãL = E (ãL) = aL �E (a∆) = aLE
(
eiω∆t

)
(4)

where we exploited the assumption that {∆t}N
t=1 are IID.

Noting that E
(
eiω∆t

)
is the characteristic function of a zero-

mean Gaussian random variable yields

ãL = e
−ω2σ2

∆
2 aL (5)

Similarly,

Cã = E
(
(ãL − ãL)(ãL − ãL)∗

)
=

(
1− e−ω2σ2

∆
)

IL (6)

where (·)∗ denotes the conjugate transpose. This covari-
ance model for the sampling uncertainties could be easily
enhanced with additional prior knowledge from the labora-
tory experiments.

2. ROBUST CAPON SPECTRAL ESTIMATION

Based on the above derivation, we assume that ãL belongs
to the uncertainty ellipsoid(

ãL − ãL

)∗
C−1

ã

(
ãL − ãL

)
≤ 1 (7)

where Cã is given by (6) and (·)∗ denotes the Hermitian
transpose operator. Using (6), the hyperspherical uncer-
tainty region is given by∥∥∥∥ãL − e

−ω2σ2
∆

2 aL

∥∥∥∥ ≤ ε (8)

where ε = β
(
1− e−ω2σ2

∆

)
. Note that the radius of the hy-

persphere is a function of ω and σ∆. The reliance on σ∆ is,
of course, expected, but the presence of ω is also intuitive
as the estimation of the spectral content at low frequency
should be less affected by sampling errors than at higher
frequencies. The extra scalar parameter β allows the uncer-
tainty disc to be extended to give a more conservative esti-
mate, which is useful for allowing extra unstructured uncer-
tainty due to short data lengths and unknown noise charac-
teristics. The robust Capon estimator [6, 7] is then obtained
using the solution to the constrained minimization

min
ãL

ã∗LR̂
−1
y ãL subject to

∥∥∥ãL − ãL

∥∥∥ ≤ ε (9)

where R̂y is the (estimated) covariance matrix of the mea-
sured data, and ‖ · ‖ denotes the Euclidean norm. To elimi-
nate the trivial solution ãL = 0, it is assumed that ‖ãL‖2 > ε.
In this case, the solution will lie on the boundary of the
constraint, simplifying the problem to a minimization with
equality constraint

min
ãL

ã∗LR̂
−1
y ãL subject to

∥∥∥ãL − ãL

∥∥∥ = ε (10)

The solution to (10) is obtained using a Lagrange multi-
plier [6]

f = ã∗LR̂
−1
y ãL +λ

(∥∥∥ãL − ãL

∥∥∥2 − ε
)

(11)

The optimal solution ˆ̃aL is given by differentiation of (11)
with respect to ãL, yielding the solution:

ˆ̃aL = ãL −
(
I+λR̂y

)−1
ãL (12)

The Lagrange multiplier λ is obtained by the solution of the
constraint equation:

g(λ) ≡
∥∥∥(

I+λR̂y
)−1

ãL

∥∥∥2
= ε (13)

A unique solution to (13) is obtained through gradient de-
scent (see [6] for details and the formulation of upper and
lower bounds). With the Lagrange multiplier determined,
ˆ̃aL is given by (12). The robust Capon spectral estimate
is given by using ˆ̃aL in place of aL in the classical power
spectrum Capon, i.e., the estimated power spectral density
is obtained as

σ̂2
ω =

1
ˆ̃a
∗
LR̂

−1
y

ˆ̃aL

(14)

In the following, R̂y is estimated by the forward-backward
method to avoid sensitivity to phase errors (see [9] for a
more detailed discussion on the benefits of this estimator as
compared to the forward-only estimator).
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3. NUMERICAL EXAMPLES

To demonstrate the advantages of the robust Capon spectral
estimator in the application of microarray data we use data
from [2]. The data consists of 6075 gene expression time
series from the genes of saccharomyces cerevisiae (bakers’
yeast) subjected to α-factor arrest. The data consists of only
N = 18 time points. The value of the estimated cell cy-
cle frequency was estimated from the peak in the ensem-
ble average of the spectral estimates for all genes. Figure 1
shows the estimated spectrum of selected genes with the Pe-
riodogram, classical Capon and robust Capon1, both the lat-
ter with filter length L = 10. Here, we use β = 8.
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Fig. 1. Spectrum estimates of selected genes by robust
Capon and classical Capon and periodogram methods . The
estimated cell cycle frequency is circled. Both axes are nor-
malised.

1The authors are grateful to Prof J. Li, Prof P. Stoica and Mr Z. Wang
for providing us with their efficient implementation of the RCB.

The estimates given in Figure 1 show typical examples
of genes which in [2] were decided to be cell-cycle regu-
lated. The marked cell-cycle frequency was obtained as the
dominant peak of the ensemble average of the entire data
set. In all cases, the robust Capon places a definite peak at
the location of the estimated cell cycle frequency. The clas-
sical Capon tends to place a very sharp peak in the vicinity
of the cell cycle frequency but the amplitude value at the
cell cycle frequency can be relatively low. It is likely that
the sharp peak is misplaced because of the significant uncer-
tainty in the data. The Periodogram, has a broader peak but,
this too is often misplaced and, as expected, suffers from
spurious peaks due to the large sidelobes. The Periodogram
and classical Capon both show more variation than the ro-
bust Capon in the spectrum outside the region containing
the estimated cell cycle. Figure 2 shows a scatter plot of the
values of the robust Capon against the classical Capon at the
estimated cell-cycle frequency.
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Scatter plot of robust Capon and classical Capon scores

Fig. 2. Scatter plot showing the correlation between the
classical and robust Capon values at the estimated cell cy-
cle frequency. Note the group of genes in the top left of
the plot showing expression profiles scoring highly for the
robust Capon but not for the classical Capon.

In general, the results show the expected positive corre-
lation. However, as seen in the top-left of the figure, there
is a subset of genes where the robust Capon estimate is sig-
nificantly higher than the classical Capon. These are candi-
dates for genes with cell-cyclic components which have not
been identified by the classical Capon. Our results support
the findings of [2], despite this there remains no absolute
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knowledge of exactly which genes are cell cycle regulated
and to what extent. Because of this our method was vali-
dated on a synthetic data set. A set of 200 synthetic gene
expression profiles of length N = 18 were created with 10%
containing a single sinusoid with a randomly distributed
phase and a frequency approximately matching that of the
estimated cell-cycle frequency in [2]. Further, the data was
corrupted by an additive white Gaussian noise with a signal
to noise ratio of 12 dB. Finally, the signal was mis-sampled
by a Gaussian distributed random variable with variance σ2

∆
being 5% of the sampling time; this corresponding well to
the reported mis-sampling in [2, 5]. As the frequency of the
sinusoid is now known, the hyperspherical constraint was
kept constant at ε = 6. Figure 3 shows a scatter plot of
the correlation between the classical and the robust Capon
estimates at the (known) frequency of the sinusoidal com-
ponent for the synthetic data. The profiles containing the
sinusoidal component, which represents a cell-cyclic com-
ponent, are distinguished from the expression profiles which
are purely noise. Both methods give low scores to the syn-
thetic gene profiles with no sinusoidal component. How-
ever, whilst the robust Capon assigns generally high scores
for the genes with a sinusoidal component, the classical
Capon’s scores are widely distributed over the entire range.
This supports the conclusion from the real data that the ro-
bust Capon is able to pick up cell-cyclic elements which the
classical Capon does not.
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Fig. 3. Scatter plot showing the correlation between the
classical and robust Capon values for synthetic data. Scores
for the sinusoidal profiles are high for the robust Capon but
spread throughout the range for the classical Capon.

4. CONCLUSIONS

We have presented a method for the idenfication of cell-
cyclic components in gene expression profiles which is ro-
bust to the uncertainties inherent in microarray data. The
method has been shown to perform well with both real and
synthetic datasets. Given that no good biologically-inspired
models are currently available, parametric estimators are in-
appropriate as of yet. However, the use of non-parametric
spectral estimators allowing for the incorporation of limited
domain knowledge through uncertainty shaping is a promis-
ing area of research.
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