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ABSTRACT 

This work aims to investigate the efficiency of digital 
signal processing tools of acoustic emission signals in 
order to detect thermal damages in grinding process. To 
accomplish such a goal, an experimental work was carried 
out for 15 runs in a surface grinding machine operating 
with an aluminum oxide grinding wheel and ABNT 1045. 
The acoustic emission signals were acquired from a fixed 
sensor placed on the workpiece holder. A high sampling 
rate data acquisition system at 2.5 MHz was used to 
collect the raw acoustic emission instead of root mean 
square value usually employed. Many statistics have 
shown effective to detect burn, such as the root mean 
square (RMS), correlation of the AE, constant false alarm 
(CFAR), ratio of power (ROP) and mean-value deviance 
(MVD). However, the CFAR, ROP, Kurtosis and 
correlation of the AE have been presented more sensitive 
than the RMS. 

1. INTRODUCTION 

The market revolution in the last years has been demanded 
from industries more and more an effective cost reduction 
in connection with quality increase of the parts 
manufactured by the machining operation. This built-up 
need faces increasingly to the manufacturing problems, 
such as rapid setup and the wear of the cutting tools [4]. 
Moreover, by virtue of the changes in the production 
system characteristics, that is, increase of the small batches 
and high costs of qualified personnel, the use of 
production system fully flexible and automatic, capable of 
compensating the process variations became imperative. 
This implies in system developing and strategies for the 
process monitoring in a manner that the automation with 
safety and repeatability can be achieved. The grinding 
process is not known enough technologically yet. This 
may have origin at the wrong faith in which the process is 
very complex to be understood due to the multiplicity of 
cutting edges and their irregular geometries, high cutting 
speed and depth of cut that varies from grain to grain. 
Damages in the part are very expensive, since all the 
previous processes besides the grinding itself are lost 
when a part is scrapped in this stage. The need of effective 

reduction of costs associated with the increase of quality 
of the parts manufactured claim the implementation of 
more intelligent systems in the industrial environments. 
Hence, the damage control in grinding process is of great 
interest to every industry dependent on this process, 
leading to lower loss rates and, in turn, to a lower 
production cost. Thus, the present work aims to investigate 
new statistical tools to detect burn in grinding by digitally 
processing the acoustic emission signals generated during 
the process. 

2. MONITORING AND PROCESS CONTROL 

The implementation of intelligent processes in industries 
utilizing computer numerically controlled machining is 
increasing rapidly. However, computer numerically 
controlled systems is not enough reliable to operate 
without human interference so far. It is common to 
observe operators of those CNC machines simply to 
correct the process parameters or identify the end of the 
tool life [1]. According to Inasaki [5], there are three 
important goals to the grinding process monitoring: 
detecting problems, which occur during the process; 
providing information to optimize the process and 
contribute to the development of a database needed to 
determine the control parameters. Taking as an example 
the external plunging grinding process, where many 
parameters dwell and need to be determined, which are 
related to the choice of the grinding wheel and coolant. 
The wheel speed, work speed and feed rate are the 
parameters mentioned. Among these parameters, the feed 
rate is the most one that influences on the grinding results. 
The choice of the grinding cycle that consists of 
determining the desired roughness, the end of the 
operation and spark-out period is another important 
parameter to be considered.  The information obtained 
during the system monitoring may be used to minimize the 
grinding cycle time and increase the process quality [5]. 
The use of acoustic emission (AE) to monitor and control 
the grinding process is a relatively recent technology [2], 
besides being more sensitive to the grinding condition 
variations compared with the force and power 
measurements [11], providing a promising technique to the 
process monitoring. The relatively easiness of digitally 
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processing the root mean square (RMS) of the acoustic 
emission signal has led approaches in which this type of 
statistic is employed. However, the inherent average 
operation involved in determining the RMS of acoustic 
emission signal makes it to a certain extent insensitive to 
impulsive events such as cracks and burn on the part, 
although this kind of parameter carries a lot of useful 
information [2]. In this present work, tests results are 
presented for two types of metals – ABNT 1045 and 
VC131 steels; setup employed; and tests off-line to 
evaluate the superficial integrity of the parts ground. 
Furthermore, results from many digital signal processing 
tools are shown, where those with amplitude independent 
are stressed and then the power of the AE signal does not 
affect the signal characteristic. This is explained due to the 
fact that the power of the AE signal may undergo 
variations during the grinding process, which have nothing 
to do with the part condition than its geometry. The result 
analyses from the digital signal processing as well as a 
discussion of the investigation are presented. 

3. EXPERIMENTAL TESTS 

The experimental tests were carried out upon a surface 
grinding machine where raw acoustic emission signals 
were collected for fifteen (15) different runs at 2.5 million 
of samples per second rate. The ABNT 1045 steel has 
been used for the tests. The major parameters were kept 
constant during the runs. However, the depth of cut was 
varied from light and aggressive cutting. All the parts were 
essayed post-mortem and the burn marks were identified. 
The setup for these runs is shown in Figure 1. 
The grinding parameters include: Grinding wheel 
Peripheral Speed: 27.94 m/s;  Workpiece speed: 0.044 
m/s; Coolant type: water-based fluid 4%; Grinding Wheel: 
Aluminum Oxide – 38A80-PVS– Norton; Grinding Wheel 
Diameter: 296.50 mm; Grinding Wheel Width: 40.21 mm; 
Workpiece Dimensions: 98.58 x 8.74 mm. 

Figure 1 – Experimental Setup 

Data was collected from a fixed acoustic emission sensor 
of the Sensis manufacturer; model PAC U80D-87, which 
was mounted on the part holder. The data acquisition 
board from National Instruments was set up to work at 2.5 
million of samples per second with a 12 bits precision per 

sample. The table 1 shows details of tests carried out for 
the ABNT 1045 steel Besides the visual analysis, 
roughness and microhardness tests were performed on the 
parts essayed to better characterize the burn. 

Table 1 – Tests with ABNT 1045 Steel 
Test Depth of cut 

µm
Cutting 
Profile 

Comments 

1 10  No burn 

2 30  Slight burn 

3 20  Severe 
burn 

4 90 10 Severe 
burn 

5 20 2,5 Severe 
burn 

6 40 5 Severe 
burn 

7 15  Burn at 
middle 

4. SIGNAL PROCESSING 

From the data of acoustic emission available on binary 
files, several programs developed in Matlab for digitally 
processing the signals was utilized, where many statistical 
correlations such as kurtosis, skew, autocorrelation, RMS 
among others were employed and are described as 
following. 

4.1 RMS of Acoustic Emission Signal 

For a given time t, the RMS value of a raw acoustic 
emission signal can be expressed by 

where T is the integration time and N is the discrete 
number of AE data within the interval T. In this work, T 
was considered equal to 1 ms [12]. 

4.2 CFAR Statistic 

Nuttal [9] is a statistic tool employed in detection of 
events, which is described by 

Where Xk corresponds to the kth FFT of x(t), υ is a 
variable exponent and 2M corresponds to the data base 
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vector size to get the FFT calculated. Although υ between 
2 and 3 provides a good performance for a wide band of 
frequency of the signal studied, this statistic needs of pre-
normalized data. Thus, due to the acoustic emission signal 
variations during the process, the constant false alarm rate 
(CFAR) is utilized, Nuttall [8]. This statistic is based on 
the supposition of flatness of the acoustic emission signal. 
An alternative version of this tool was employed due to the 
system distortions and expressed by the equation 3 [10]. 

Were M=1280 and the frequency range between 300 
and 700 kHz was considered. 

4.3 Kurtosis and Skew Statistics 

The measurement if the distribution tail is longer than 
other is made by Skew. In case of kurtosis, the tail size is 
concerned. Both statistics are utilized in this work aiming 
to find an indicator to the acoustic emission variations. 
Thus, abrupt changes in the AE signal such as those in 
which burn occurs may result in spikes in these statistics. 
The equations 4 and 5 shows the way of calculating 
kurtosis and skewof an x signal. 

where µ is the mean of x, N the number of samples in 
the range considered and σ the standard deviation. 

4.4 Mean Value Dispersion Statistic – MVD 

The form of MVD statistic is therein employed [3] but 
in a more convenient form used by Wang [10] as shown in 
equation 6. 

Where X has the same meaning as to CFAR statistic 
as well as n1 e n2.

4.5 Ratio of Power – ROP 

It is instinctive to think about the different behaviors 
expected for a good part or bad one by observing the 
frequency spectrum of the acoustic emission signal. 
Hence, for each block of acoustic emission data ROP is 
given by equation 7. 

where N set to 1024; n1 and n2 in the range of 300 to 
700 kHz were chosen. 

4.6 Autocorrelation 

The time correlation of a function Φxy is defined by 
Oppenheim [6] in Equation 8. 

Φxx is commonly referred to as autocorrelation. 

5. RESULTS AND DISCUSSION 

The graphs for each workpiece tested were obtained from 
the digital signal processing of acoustic emission signals in 
which the statistics previously described were employed. 
The results from tests 1, 5 and 7 for ABNT 1045 steel are 
presented as shown in Figures 2 to 4 respectively. 

Figure 2 – Results for Test 1 –ABNT 1045 steel with no 
burn occurrence; Horizontal axis corresponds time in 

seconds and Vertical axis Volts multiplied by a constant 

Figure 3 – Results for Test 5 – ABNT 1045 steel with 
severe burn from close to the beginning to the end of the 
workpiece; Horizontal axis corresponds time in seconds 

and Vertical axis Volts multiplied by a constant 
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Figure 4 - Results for Test 7 – ABNT 1045 steel with burn 
in the midst of the part; Horizontal axis corresponds time 

in seconds and Vertical axis Volts multiplied by a constant 

From the results for the ABNT 1045 steel it can be 
observed that the statistic RMS had its level pretty steady 
for the non-burning workpiece during all over the grinding 
pass while the signal had good variation when severe burn 
occurred such as in Figure 3. Skew and kurtosis presented 
variation when burn took place but positive amplitudes for 
some tests and negative ones for others were observed, 
which are not useful for an indicator parameter to burn. 
Surprisingly, the ROP turned out to be a good indicative to 
burn, since its behavior has shown quite sensitive to the 
studied phenomenon. Besides, its level is low to those 
non-burning parts and high to the burning ones. 
Additionally, it has well characterized the beginning of 
contact between the wheel and part as well as the end of 
the grinding pass. The MVD tool presented a behavior 
similar to the RMS statistic but not so good as RMS 
because the low level obtained for the test 7. The 
autocorrelation statistic was very sensitive to burn for the 
most tests performed but for a few it has shown useless by 
virtue of the decreasing observed when burn occurred. 
Similarly to the autocorrelation, the CFAR tool has 
behaved quite well to burn detection for most of the tests 
carried out but with no decreasing of signal at all, except 
for test 7 where a decreasing was observed during the 
grinding pass. This behaviour, however, did not 
compromise the utility of CFAR tool, for the level of test 7 
has kept higher than to the non-burning test. 

6. CONCLUSIONS 

From digital processing of the raw acoustic emission 
signal for the ABNT 1045 steel, the results show that 
several statistics have worked quite well to burn detection 
as is the case of RMS, CFAR, ROP e MVD. Nevertheless, 
skew and kurtosis statistics have presented an interesting 
behavior regarding the waveform of the signal and their 
variation along the grinding pass, though they are not 
effective to detect burn. These features may be better 

explored in further investigation. The autocorrelation has 
shown ineffective to detect burn.  
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