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ABSTRACT

Billions of dollars allegedly lost to piracy of multimedia have re-
cently triggered the industry to rethink the way music and movies
are distributed. As encryption is vulnerable to re-recording, cur-
rently all copyright protection mechanisms tend to rely on water-
marking. In order to analyze the security of such systems, recently,
a new breed of replacement attacks has been proposed that strongly
affects most modern watermarking systems. A typical replacement
attack relies upon the observation that multimedia content is often
highly repetitive. Thus, the attack procedure replaces each signal
block with another, perceptually similar block computed as a com-
bination of other similar blocks found either within the same media
clip or within a library of media clips. In this paper, we demon-
strate that by randomizing the attack algorithm, its performance
can be improved in almost all aspects: attack efficacy, distortion,
speed, and size of the look-up media library. We describe the lo-
gistics of the new attack and an exemplary implementation against
a spread-spectrum data hiding technology for audio signals.

1. INTRODUCTION

Significantly increased levels of multimedia piracy over the last
decade have put the movie and music industry under pressure to
deploy a standardized anti-piracy technology. The goal is to en-
force copyright protection via content screening on client media
players. A media player would refuse to play copyright protected
content for which the user does not hold a license. In a forensic
marking scenario, each distributed copy is marked with a unique
fingerprint. Forensic analysis of pirated material is then performed
on a trusted secure server in the presence of the original content.
Here, players are not modified. Both systems have inherent prob-
lems. Content screening demands public key watermarking [1],
whereas fingerprinting suffers from exceptionally low collusion
resistance [2]. In addition, the embedded watermark in both ap-
plications must survive an arbitrary signal processing attack which
preserves perceptual fidelity of the targeted content.

1.1. Rationale Behind the Attack

Recently, Kirovski and Petitcolas proposed the first version of the
replacement attack which aims at reducing the correlation of a
watermarked signal with its watermark by replacing each original
watermarked block of the multimedia signal with another percep-
tually similar block [3]. The replacement is computed as a combi-
nation of other signal blocks that are perceptually similar but not
tainted with the same watermark bits as the original marked block.
Similar attacks preceded the replacement attack in [4] and [5].

Assuming a highly repetitive multimedia content, which is the
case with most music (example illustrated in Figure 1) and video,
the replacement attack adds a nearly marginal noise to the marked
content. However, although the noise appears to be zero-mean

i.i.d. gaussian, it wipes out an enormous percentage1 of the cor-
relation [3]. An additive and truly gaussian noise of equivalent
variance would not alter the correlation beyond its original statis-
tics. The surprising effect of the replacement attack stems from the
redundancy which exists in multimedia content. By using this in-
formation, one can recreate the protected multimedia while being
marginally dependent upon the originally embedded watermark.

20 40 60 80 100 120 140 160 180 200 220 240
0

1

2

3

4

5

6

7

2048-long MCLT block index

S
im

ila
rit

y 
in

 d
B

Similarity is not

accidental. Pairs of

blocks found at

correlated locations

Original location

Fig. 1. Music self-similarity: a similarity diagram for five different 2048-
long MCLT blocks within a techno clip with 240 MCLT blocks. Zero-
similarity denotes equality. Abscissa x denotes the index of a particular
MCLT block. The ordinate denotes the similarity ||x, Bi|| of the cor-
responding block x with respect to the selected five blocks with indices
Bi|i = {122, 127, 132, 137, 142}.

The rationale behind the attack is simple. A given water-
marked block x + w ∈ {R}N ,w ∈ {±1}N of N samples repre-
sents a point in the N -dimensional space. With no loss of general-
ity2, the original content can be modelled as a zero-mean gaussian
random variable of i.i.d. samples x = N (0, σx)N . Based on the
statistics of spread spectrum watermarking [6], by adding additive
white gaussian noise n = N (µ, σ)N to the marked content, the
expected normalized correlation value of E [(x + w + n) · w] =
E [(x + w) · w] = 1 remains intact for any mean µ and variance
σ2. Operator (·) is defined as a normalized inner product of two
vectors: x·y = N−1 ∑N

i=1 xiyi. We denote all points y ∈ {R}N

in a ball Y (ε) : {||y − (x + w)|| ≤ ε} at minimal Euclidean dis-
tance ε ≥ 1 from x + w as ”perceptually valid” points. The goal
of the attacker is to drive x + w with some noise pattern na into
a point of attack z = x + w + na ∈ Y (ε) which is not correlated
with w, i.e., E [z · w] = 0. Although there are many points in
Y which are not correlated with w, for example x is by definition

1Authors report up to 90% correlation reduction as a result of the attack.
2Due to the Central Limit Theorem.
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one of them as E [x · w] = 0, it is difficult to find in a single trial
an na which cancels out the effect of w. For example, random
na = n provably does not affect E [(x + w + na) · w].

There are three standard approaches to find na. The first one
is to use the estimation attack na = sign(x + w) which has lim-
ited success if w is not redundantly embedded [1]. If the water-
mark detector is available to the adversary as in the case of content
screening, she can launch a multi-trial search for na which quickly
finds an optimal attack vector to achieve its goal [7]. Finally, the
third approach is to randomly bend the space dimensions to inflict
difficulty positioning w in the same direction as it had when em-
bedded to x [8, 9]. This type of an attack can be prevented using
redundancy while embedding w [10], however, such a solution is
prone to the estimation attack [11].

The replacement attack assumes that multimedia is repetitive
enough so that for a given point x+w of sufficient dimensionality
N , there exists at least one other point a within the same media
clip that is within the ball of interest Y (ε). By definition, if a is
not tainted with w, replacing x+w with a, intuitively, removes the
targeted correlation. However, if a = x + w, then E [a · w] = 1.
With the increase of N , this case can be made arbitrarily unlikely.
Although perceptual repetitiveness in audio [3] and in particular
video [5] is significant, the above assumption is still strong as it is
unlikely to expect that for any high-dimensional point in the media
clip there exists a redundant one.

To address this issue, the replacement attack as described in
[3], creates a in two steps. First, it finds a set B of K points
B = {b1, . . . ,bK} in the media clip closest to x + w and then,
it computes a least-squares approximation of x + w using a linear
combination of vectors in B. The resulting approximation is the
replacement vector a. For large N , it is safe to assume that none of
the vectors in B are correlated with w. However, the correlation
of their linear combination with w increases with the increase of
K. Theoretic analysis of this process is exceedingly difficult as it
is hard to model content similarity due to its diverse nature. To
address this issue, the replacement attack assumes that there is a
”safe distance” α ≤ ||a − (x + w)||, that a needs to have with
respect to x + w in order to be non-correlated. This is a model
that has proven to yield solid results for small K [3].

We expand upon this similarity model by assuming that a =
x + d + v, where d is the similarity noise in the original content
modelled as a zero-mean normal random variable of i.i.d. samples
d = N (0, σd) and v ∈ {±1}N is the watermark added to the
original block x + d.

Theorem 1. Computing E[a·w]. Assuming mutual independence
of x, d, v, and w, if ||a − (x + w)|| = α, then:

2E[a · w] = 2 + σ2
d − α. (1)

Proof. From ||a− (x+w)|| = α and E[x ·w] = 0, we conclude
that 2E[a · w] = 1 + ||a − x|| − α. From ||a − x|| = ||d|| + 1,
we derive Eqn.1.

From Th.1, we conclude that if we want to drive E[a ·w] to a
small value, the minimal distance α must be driven close to 2+σ2

d.
Needless to say, the efficacy of the attack is highly determined
by the similarity metric σ2

d, which represents the variance of the
difference among most similar blocks in a given media clip. By
using least-squares approximation of x + w using various similar
blocks from the media clip, we effectively reduce σd at the cost of

increasing the correlation of a and x + w. Careful execution of
this process is the key to the success of the replacement attack.

In the remainder of this paper, using randomization of the ba-
sic primitives of the replacement attack, we address several trade-
offs and problems that inherently exist in realistic attack scenar-
ios. In the next section, we present the new techniques and the
logistics behind the proposed steps. Finally, in the last section,
we demonstrate how it can be applied on a spread spectrum audio
watermarking technology.

2. RANDOMIZED REPLACEMENT ATTACK

The replacement attack is not limited to a type of content or to
a particular watermarking algorithm. For example, systems that
modulate secrets using spread-spectrum [6] and/or quantization in-
dex modulation (QIM) [12] are all prone to the replacement attack.
For brevity, the analysis of the attack in this paper is restricted to
direct sequence spread spectrum watermarks. In order to launch
the attack successfully, the adversary does not need to know the
details of the watermark codec. This assumption is convenient for
the adversary compared to the knowledge that other attacks men-
tioned in the previous section mandate.

Given a signal x̂ ∈ {R}M and a corresponding watermark
ŵ ∈ {±1}M , the attack performs the following steps:

I. partition x̂+ŵ into overlapping blocks x+w of length N ,

II. for each block x + w, find a set B of K perceptually most
similar blocks in x̂ + ŵ that do not overlap x + w,

III. compute the replacement block a as a least-squares linear
approximation of x + w using blocks from B, and

IV. replace x + w with a.

2.1. Attack Trade-offs

Considering the issues related to the replacement attack and pre-
sented in the previous section, we identify several important trade-
off decisions that the adversary needs to make before applying the
attack. The trade-offs reflect on the following important perfor-
mance metrics: reduction in correlation, distortion, and speed.

T.1 POINT DIMENSIONALITY N has a profound effect on E[a·
w]. By increasing N , the adversary reduces the likelihood
that vectors in B, as well as their linear combinations, are
correlated with w. On the other hand, significantly in-
creased N reduces the expectation on the cardinality of B
as it increases σd, thus, reducing attack effectiveness. One
heuristic is that N should be maximized for a given clip so
to still produce ”perceptually valid” matches.

T.2 SELECTION OF α. Increased α improves all aspects of at-
tack performance except distortion. This parameter should
be maximized for a given perceptual quality.

T.3 SIZE M OF THE LOOK-UP MEDIA LIBRARY x̂ + ŵ de-
termines the complexity of the attack and can significantly
improve σd.

2.2. Randomizing the Attack

2.2.1. STEP I: Signal Partitioning.

For improved perceptual quality of the resulting multimedia clip,
the protected signal z = x̂ + ŵ is partitioned into a set of blocks
Π = {p1, . . . ,pP }, where each block pi = {hjz1+(i−1)N/2+j ,
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j = 1 . . . N} overlaps its neighbors and is windowed with an anal-
ysis windowing function h ∈ {R}N that yields perfect reconstruc-
tion with its synthesis counterpart. With no loss of generality, we
assume that x̂ + ŵ is an one-dimensional signal such as audio.

2.2.2. STEP II: Search for the Substitution Base.

Finding perceptually similar blocks of certain music or video con-
tent is a challenging and computationally expensive task. In this
paper we restrict our focus to audio, although video is in many
cases a much better source of repetitive content within a single
recording. For example, within a common scene, its objects ex-
perience geometric transformations significantly more frequently
than changes in appearance. In general, repetition is often a prin-
cipal part of composing music and is a natural consequence of the
fact that distinct instruments, voices and tones are used to create
a soundtrack. Thus, it is likely to find similarities within a sin-
gle musical piece, an album of songs from a single author, or in
instrument solos.

For each point pi, we want to find a set Bi of K best matched
blocks in z denoted as Bi = {b1, . . . ,bK} with individual points
bj = h{zsj , . . . , zsj+N−1} where sj indexes the location of
bj in z. Before we define the search process, we adopt normal-
ized and squared Euclidean distance between two N -dimensional
points a and b as a similarity metric:

φ(a,b) = ||a − b|| =
1

N

N∑

k=1

[ak − bk]2 . (2)

Although in realistic attack scenarios the similarity function
is masked with the perceptual model for improved matching, in
this section we disregard this effect. Next, note that maximized
normalized correlation corresponds to minimal Euclidean distance
in L2. Thus, the search for top K matches in z against each pi

can be conducted in the following way. We first compute the nor-
malized block convolution of pi with respect to z. This can be
done rather fast using the Fast Fourier Transform and the overlap-
add fast convolution method [13]. The complexity of this step is
O(M log2 N). The top K correlated blocks in z that do not over-
lap pi constitute the substitution base Bi for pi.

2.2.3. Step III: Computing the Replacement.

This step of the algorithm is crucial as it resolves the trade-offs
related to the selection of α and the inherent σd - the two most
important metrics of the attack. First, we review the restrictions
of the attack, which are different compared to the ones in [3]. We
restrict that each sample ai of the replacement block a is at a ”safe”
and ”perceptually valid” distance from the sample pi it is replacing
in p. More formally:

(∀ai ∈ a) α ≤ |ai − pi| ≤ ε. (3)

We discuss several randomized algorithms for computing a
such that the above constraints are satisfied.

Algorithm A1 computes the replacement block a in several
steps. In the first step, it generates c random and distinct subsets of
r blocks from B. We denote these subsets S1 through Sc. For each
of these subsets, A1 computes the least squares approximation of
p. More formally, for a given Si = {s1, . . . , sc} we are seeking
for λi such that ||Siλi−p|| is minimized. Optimal λi is computed
simply as:

λi = (ST
i Si)

−1ST
i p, (4)

which yields the following replacement candidate vector ai =
Siλi. Samples from ai can be categorized into two categories:
ones that satisfy Eqn.3 and the ones that do not.

To address this issue, we introduce a binary coverage matrix
qi = {0, 1}N associated with each Si. We set to qi,j = 1 if
sample ai,j satisfies Eqn.3 and vice versa. We define as effec-
tive dimensionality N̄(ai) the number of samples a given replace-
ment ai covers N̄(ai) =

∑N
j=1 qi,j . Heuristically, we are already

driven by the assumption that the larger the effective dimensional-
ity, the stronger the effect of the attack on the resulting correlation.
Hence, we can model the goal of our replacement algorithm as a
combinatorial optimization problem. A1 aims to cover as many as
possible samples from p using as few as possible vectors from the
set A = {a1, . . . , ac}. This problem is better known as minimum
cover and is NP-hard [14]. A1 solves it using a greedy heuris-
tic which iteratively selects vectors from A that cover maximum
number of remaining uncovered samples. There may be samples
that cannot be covered by any ai - their values are set to the cor-
responding values of the marked content z in order to minimize
distortion.

Parameters K, c, and r strongly influence the performance of
A1. By increasing r, we reduce σd at the cost of stronger correla-
tion of each ai and z. Empirically, we have received best results
for small r, usually in the order of r ∈ [1, 20]. Once r is set, we de-
termine the average effective dimensionality N̄ in A. The higher
the N̄ , the more candidate trials c A1 can afford to test. Again
empirically, we have achieved solid results with c ≈ N̄ . Finally,
the size of the substitution database is kept large at K ∼ N̄ .

Algorithm A2 is a significantly slower, but still randomized,
version of A1 and the algorithm presented in [3]. It is based on the
observation that the blocks in A are highly redundant because they
are searched using a common criterion (Eqn.2). Using only these
blocks in linear combinations restricts strongly the search space. A
better, but still not optimal strategy in representing p as accurately
as possible using a constant number of blocks from z, is to use a
variant of Gram-Schmidt orthonormalization (GSO) [15].

Hence, A2 iteratively performs the following process. It finds
the first A = a1 = B1 with K = 1. The most similar point
a1 is subtracted from p as p − λ1a1, where λ1 is a scalar equal
to the normalized correlation of λ1 = p · a1/(||p|| ||a1||). In
the subsequent iteration, A2 computes the similarity of p − λ1a1

with z as described in Subsection 2.2.2, finds the best match a2

and subtracts it from the remainder as p − λ1a1 − λ2a2, where
λ2 = (p − λ1a1) · a1/(||p − λ1a1|| ||a1||). This procedure is
iterated while ||p − ∑

λiai|| > α.
The above version of A2 has the problem that not all samples

of the final replacement a =
∑

λiai obey the constraint in Eqn.3.
In order to address this problem, we adjust A2 to discard samples
that satisfy Eqn.3 in the subsequent iterations. In addition, we con-
sider the top K similar blocks in each iteration as it is not case that
the closest point provably has the highest effective dimensional-
ity. These two adjustments marry A1 with GSO to best describe
A2. Similarly, one can advertise A1 as a low cost version of GSO
because it does not need to perform the similarity search in each
iteration. Finally, in this manuscript, we fail to provide detailed
description of the algorithms due to brevity. Instead, we present
an application of the attack on an off-the-shelf spread spectrum
scheme for audio watermarking.
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Table 1. Response of a spread-spectrum watermark detector to the replacement attack. Attack parameters are K = 200, r = 5, c = 100, α = 2.5dB
and ε = 4dB. The results are obtained for five full songs in different genres. Watermark amplitude equals one. The search space was drastically smaller
than in [3] at only 10 seconds of audio from the same song. The table presents information collected from 100 different tests for each test clip: σ2

x is signal
variance after a moving average filter, E[a ·w]∗ is the correlation response obtained from the watermark detector and normalized with respect to the sample
coverage, the total number of samples altered by the attack, the total number of audible samples, their ratio, and finally, the consequent distortion resulting
from the attack.

Parameter Techno Jazz Rock Vocals Classical Average
σx 3.77 3.71 4.34 4.60 5.49 –

E[a · w]∗ 0.07 0.47 0.50 0.42 0.43 0.4
Covered samples 87364 59126 74847 67716 46693 67149
Audible samples 101359 74673 91974 77985 56410 80480
Coverage [%] 86.19 79.18 81.37 86.83 82.77 83.27
Noise [dB] 2.67 2.56 2.55 2.74 2.60 2.60

3. RANDOMIZED REPLACEMENT FOR AUDIO

Since most psycho-acoustic models operate in the frequency spec-
trum [16], we launch the replacement attack in the logarithmic
(dB) frequency domain. The set of signal blocks Π is created from
the coefficients of a modulated complex lapped transform (MCLT)
[16]. The MCLT is a 2× oversampled DFT filter bank, used in
conjunction with analysis and synthesis windows that provide per-
fect reconstruction. We consider MCLT analysis blocks with 2048
transform coefficients. Each block of coefficients is normalized
and psycho-acoustically masked using an off-the-shelf masking
model [16]. Similarity is explored exclusively in the audible part
of the 2-7.2KHz frequency spectrum. This is the spectrum com-
monly used to hide watermarks [10]. Because of psycho-acoustic
masking, the actual similarity function in Eqn.2 is not commu-
tative. A replacement block is always masked with the psycho-
acoustic mask of the replaced block. Watermarks are spread over
240 consecutive MCLT blocks.

Table 1 shows the response of a spread-spectrum watermark
detector to a version of the replacement attack guided by A1. At-
tack parameters are K = 200, r = 5, c = 100, α = 2.5dB
and ε = 4dB. The results are obtained for five full songs in dif-
ferent genres. Watermark amplitude equals one. The search space
was drastically smaller than in [3] at only 10 seconds of audio
taken from the same song. The table presents information aver-
aged over 100 different tests for each test clip. Parameter σ2

x is
signal variance (of x) after applying a moving average filter [10].
Row marked as E[a·w]∗ is the correlation response obtained from
the watermark detector and normalized with respect to the sample
coverage. We also present the coverage of the total number of sam-
ples altered by the attack, the total number of audible samples, and
their ratio. Finally, we demonstrate that the attack on the average
caused distortion marginally higher than α. For a search window
almost 4 times smaller than in [3] and a signal distortion at only
2.5dB, we have succeeded to almost completely remove the wa-
termark in one song (93% watermark removal) and more than half
the correlation in the remaining four clips.

In summary, we identify two potential prevention strategies
against a replacement attack. The first one is to enforce a hiding
primitive to identify rare parts of the content at watermark em-
bedding time and mark only these blocks. With the randomiza-
tion of the replacement attack presented in this paper, this attack
poses a great computational challenge and reduces significantly
the practical significance of such a scheme. Second, in the case
of spread-spectrum watermarks, longer and stronger watermarks

and increased detector sensitivity may enable watermark detection
at lower thresholds (detection thresholds at 0.05–0.1). Unfortu-
nately, such a solution results in a significantly lowered robustness
with respect to de-synchronization and estimation attacks.
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