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ABSTRACT

The focus of this paper is to hide information in sinusoidal
audio representations. Watermarks are embedded by introducing
quantization index modulation (QIM) in frequencies of sinusoids.
The frequency shifts due to QIM are controlled to be less than one-
thirtieth Bark, which requires high accuracy in frequency estima-
tion for watermark decoding. Therefore, this paper presents a hy-
brid multiple frequency estimator which consists of spectral inter-
polation followed by iterative square error minimization. The fre-
quency estimator is tested in watermarking both computer gener-
ated sounds and actual recordings. The watermarks are intended to
survive MP3 compression. Selected experiments are documented
and discussed.

1. INTRODUCTION

In [1], we proposed an information hiding framework to water-
mark parametric representations for synthetic audio. QIM, as ex-
plained in details in Sec. 2, is introduced to the parametric repre-
sentation instead of the audio signal itself. Quantized parameters,
hence carrying information, are used to synthesize a watermarked
version of the signal. The watermarked signal can go through blind
operations that introduce no perceptible artifacts, and the water-
marks are designed to remain decodable after such operations. Un-
der this framework, it was demonstrated in [1] how frequencies of
sinusoids as parameters can be used for watermarking. In an ex-
ample of watermarking single tone sinusoids, a data hiding rate of
50 bps was achieved subject to MP3 compression with relatively
low bit error rate (BER).

However, during watermark decoding, the result above was
obtained by exhaustive maximum-likelihood frequency estima-
tion, which is inefficient when the parameter space is multi-
dimensional. To extend from single-tone to multi-tone watermark-
ing, this paper proposes a fast iterative method for multiple fre-
quency estimation. The method uses parabolic interpolation of
the logarithmic magnitude spectrum to obtain an initial estimate
of peak frequencies, and the estimation is refined by a few itera-
tions using Newton’s method. Although Newton’s method is well
known to be not always stable, it is shown in Sec. 3 empirically
that, if frequencies are well resolved to begin with, parabolic spec-
tral interpolation gives a good initial estimation for subsequent it-
erations to converge and reduce the estimation error. The perfor-
mance of the frequency estimator is compared against the theoretic
limit of the Cramér-Rao lower bound, which is derived in the ap-
pendix.

Finally, the frequency estimator is tested in watermarking si-
nusoidal representations for a computer generated sound and for
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Fig. 1. Watermarking parametric representations for synthetic au-
dio

an actual recording. In the latter case, the sinusoidal representa-
tion does not exist a priori and has to be transcribed by sine +
noise + transient decomposition [2]. Not surprisingly, much bet-
ter data hiding rate and BER are obtained in the case of computer
generated sound. Sec. 4 documents the test results, and Sec. 5 de-
scribes several challenges to overcome before frequency QIM can
be applied for watermarking general audio.

2. SYSTEM OVERVIEW AND DEFINITION OF
TERMINOLOGIES

Fig. 1 shows a generic block diagram of watermarking paramet-
ric representations for synthetic signals. Throughout this pa-
per, the vector parameter 6 is assumed to be the frequencies
(w1, w2, ..., wk ) of multiple sinusoids.

2.1. Watermark encoding based on QIM

For each sinusoid, we attempt to hide one bit per frame length by
introducing QIM to its frequency. In other words, as shown in Fig.
2, one of two interleaving sets of frequency quantization points
are used depending on the binary value the sinusoid is supposed to
carry. The quantization step size, defined here as the spacing d be-
tween codebooks, should be large enough so that watermarks sur-
vive expected types of signal processing, and small enough so that
the frequency shifts are not objectionable. The spacing is linear
below 500Hz, and log scaled above 500Hz, which is roughly pro-
portional to the spacing of critical bandwidths. In the experiments
described later, the spacing is chosen to be between 61—0 and %
Bark, which is comparable to the just noticeable difference (JND)

in human pitch perception [3].
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Fig. 2. Quantization index modulation

2.2. Audio synthesis

Given quantized frequencies, the sinusoids are synthesized in a
phase-continuous manner to avoid artifacts at frame rate.

2.3. Blind signal processing

Currently, we only consider making watermarks robust to common
signal processing procedures that introduce no perceptible distor-
tions, particularly the MP3 compression. Also, within the scope of
this paper, synchronization attacks are not considered.

2.4. Frequency estimation

The frequency estimation consists of two stages. In the
coarse stage, the short-time spectrum of observed signal y =
(Y=~ ,Yy—nN+1, .., yn) is calculated using the Gaussian window [4]
with @ = 2. Then, assuming the number of sinusoids is known to
be K, the log magnitude spectrum is parabolically interpolated to
locate K peaks simultaneously. If this fails, the window length
keeps increasing until K peaks are found. The frame rate remains
the same as in watermark encoding. The interpolated peak fre-
quencies initializes the fine stage, which is supposed to iteratively
minimize the cost function £ = £(w1, w2, ..., wk;y) defined as the
least square linear approximation error of y with respect to the sub-
space spanned by the sinusoids of frequencies (w1,w2, ..., wk).

E(wi, w2,y .y WKY) = ‘(A(ATA)_IAT - I)y‘z, €))

where the matrix A consists of 2K real-valued column vectors
corresponding to sin and cos of frequencies (w1i,ws2,...,wk).
Then, the iteration procedure is specified as the following,

Step 1: Initialize with the frequencies obtained from the coarse
stage. Set ¢ = 1.

Step 2: Measure the 1% and 2% partial derivatives of ¢ with
respect to w; by introducing a small perturbation Aw.

Step 3: Fix all other frequencies wj, j # ¢, and update w; by
Newton’s method [5].

£ —¢” Aw
“’i““i‘(m)'— @

2
Step 4: Increase ¢ by 1. Go back to Step 2.
An iteration is defined as an entire round in which all frequen-
cies are updated once.

2.5. Watermark decoding

The estimated frequencies are re-quantized to decode the water-
mark binary values. Decoding is successful if the frequency esti-
mation error is within :l:%.

A, (Hz)

0.5

Af1 (Hz)

Fig. 3. Simultaneous frequency estimation under AWGN. f; =
440Hz, f» = 240Hz, and SNR = 20dB.

3. FREQUENCY ESTIMATION PERFORMANCES

In this section, the performance of the two-stage frequency estima-
tor is analyzed. We shall examine if the fine stage converges and
improves the coarse estimation.

Various SNR and frequency spacing are set to test the fre-
quency estimator with the fixed sampling rate of 16kHz and frame
length of 16ms. Fig. 3 shows the result of one typical setting. The
signal consists of two sinusoids that are well resolved within the
frame length. The two sinusoids have the same amplitude. Addi-
tive white Gaussian noise (AWGN) is added to the signal before
frequency estimation begins. In the plot, the solid-lined ellipse
shows the nominal bias and variance after the coarse stage of fre-
quency estimation, averaged over 100 attempts. The dash-dot el-
lipse corresponds to the fine estimation after 5 iterations. The el-
lipse marked with circles shows the Cramér-Rao bound (CRB) [6].
The 100 actual estimated frequency pairs are each marked with x.

From Fig. 3, it is clear that the fine stage helps to reduce both
the bias and the variance. The nominal estimation error is within
1Hz at around 20dB of SNR. Also, the estimator is quite efficient
in terms of the speed approaching CRB.

However, when frequencies can not be well resolved within a
frame length, Newton’s method tends to diverge even if the coarse
stage gives a good initial frequency estimation. In this case, a more
sophisticated frequency estimator is necessary and left as a future
research direction.

4. EXPERIMENTS

The previously described system is tested in watermarking subject
to compression and decompression by an MP3 codec.

4.1. Watermarking a computer-generated signal

A sinusoidal representation is manually transcribed for the first
two measures of a 4-part orchestration of Air in D from Suite No.
3 composed by J.S. Bach. Each of the 4 instruments spectrally
consists of a fundamental and an overtone. The two partials have
comparable amplitudes. Below and above 500Hz, the QIM step
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Fig. 4. Frequency trajectories of Bach’s Air in D and frequency
estimation after MP3. The top plot shows the watermarked fre-
quency trajectories. The bottom shows the result of frequency es-
timation.

size is 2Hz and 10 cents (of a semitone), respectively. The 8 sinu-
soids are quantized independently. The synthesis frame rate, which
is the data hiding rate per sinusoid, is 62.5/s, and the synthesized
audio is sampled at 16kHz. The MP3 codec compresses the signal
to about 18 kbps.

Fig. 4 shows a typical frequency estimation result. As ex-
pected, the estimation is quite successful when the 8 frequency tra-
jectories do not collide with one another. The error is most promi-
nent between the 280th and the 340th frames, when the 3rd and
the 4th trajectories from the top actually have the same frequency.

Experiments show that the watermark decoding bit error rate
P, ; of trajectory ¢, averaged over 2560 bits, ranges from P ¢ =
0.32% to P.,3 = 4.76%.

4.2. Watermarking a recorded signal

In Fig. 5, the spectrogram of an actual trumpet recording is shown
on the left. On the right, the spectrogram of its sinusoidally mod-
eled components, with frequency QIM, is shown. The details of
sinusoidal modeling are beyond the scope of this paper. It suffices
to summarize here that a sine + noise + transient decomposer con-
stantly looks for the best representation of the signal as a superpo-
sition of quasi-stationary sinusoids, and the sinusoids can emerge,
disappear, smoothly change frequencies and amplitudes, and be
interrupted by regions of rapid transient in time. More interested
readers are directed to [2].

In this example, the step size of frequency QIM is 1.5Hz below
and 5 cents above 500Hz. The residual of sinusoidal modeling is
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Fig. 5. A spectrogram and its frequency QIM version
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Fig. 6. Frequency trajectories and watermark decoding accuracy

added back to the watermarked sinusoids to form the watermarked
version of the original signal. No transient regions are detected.

43 bps of data hiding rate is attempted by joint frequency QIM
of all sinusoids above the masking threshold computed using a
simple two-slope spreading function [7]. Here, joint frequency
QIM means that, at each frame, all sinusoids are quantized using
the same codebook. Again, the watermarked signal goes through
the MP3 codec. On the decoding side, the estimated watermark bi-
nary value is an energy weighted sum of binary values determined
by individual sinusoids.

Fig. 6 shows the success rate of watermark decoding. On the
top, frequency trajectories are shown as a reference. On the bot-
tom, 1 — BER is plotted by smoothing over a period of 1.0s and
averaging over an ensemble of 10 runs. The success rate of the first
and the last 0.5 second is not shown due to time-smoothing. The
solid line shows the decoding accuracy with Newton’s iterations
for frequency estimation, and the dashed line shows the accuracy
without iterations. It is clear that Newton’s iteration helps to re-
duce BER. However, the BER is much higher than in the case of
watermarking computer generated sound, and strongly depends on
signal characteristics as time proceeds.
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5. DIAGNOSES AND FUTURE DIRECTIONS

In the future, we would like to study robust frequency estimation
for under-resolved cases. Also, for watermarking based on fre-
quency QIM to be applied to more general audio, our current si-
nusoidal modeling technique is not sophisticated enough to handle
chirps well. After all, the very idea of parabolic interpolation and
iterative phase locking is based on the assumption of stationarity.
As a result, the residual of sinusoidal modeling is not negligible
when frequencies vary rapidly, and comes in as extra noise when it
is added back to the signal, which severely degrades watermark de-
coding performances. Therefore, we would like to pursue a higher
level of signal modeling. Finally, since the human frequency JND
varies from person to person, it is debatable if a difference of 1/60
Bark can be heard. We are interested in a thorough psychoacoustic
test to evaluate if the frequency shifts introduced by the proposed
watermarking system are noticeable and objectionable.

6. CONCLUSION

The hybrid multiple frequency estimator is shown to converge and
approach CRB when the frequencies to estimate are well resolved
within the time frame. The estimator is applied to the decoding of
watermarks that are embedded in frequencies of sinusoidal audio
representations. The embedding is based on QIM, and the decod-
ing is sucessful if the frequency estimation error is below half of
the quantization step size. Experiments show that, by introducing
debatably noticeable frequency modulation, audio data hiding can
be achieved subject to MP3 compression. The actual data hiding
rate depends on the frequency spacing of sinusoids, the number of
sinusoids, and, in the case of watermarking an actual recording,
how well the signal can be sinusoidally modeled.
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A. DERIVATION OF CRB FOR MULTIPLE FREQUENCY
ESTIMATION UNDER AWGN

Define an audio synthesis as a function that maps a vector parame-
ter § € RX toasignal s? € C?V+1. Let y be an observation of s’
subject to an additive noise u, and let u be probabilistic such that

y=s"+u~ f(y;0) 3)
The Fisher information matrix J is defined as follows,

OlnfOln f
75(6) = Brvo | g5 5, ]

C)

The Cramér-Rao matrix inequality [6] sets the lower bound of
error variance for non-biased estimators,

2 > J71(6) ®)

where % = E[(6 — 6)(f — 6)7] is the covariance matrix of the
estimation error by any unbiased estimator T'(y) = 6.

In the case of multiple frequency estimation under white Gaus-
sian attacks, the parameter vector § = (w1, w2, ..., wk ) consists of
all the unknown frequencies. Let the synthesized signal be

K
SULW2 WK = ZA’“ exp[j(wrn + ¢r)] (6)
k=1
and let u, be in C and have i.i.d. Gaussian real and imaginary
parts with A'(0,02). Let n € [—N, N] be the time frame for
observation. Then we have

f(y:6) = !

1 92
- - - |y — 7
V(2m0?)2BN+D xp(=gzly =) @
Now, using Eq.(4), the Fisher information matrix can be de-

rived,

N

Jij = A:;lj > nPcos[(wi —wi)n+ (¢ —45)] (¥

n=—N

In particular, with ¢ = j, the diagonal terms have the following
simple close form expression,

2
Ji = A_; _ N(N +1)(2N +1) ©)
o 3
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