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ABSTRACT 

Auto-regressive (AR) extrapolation has been in recent years used 
to achieve super-resolution capability in spectral estimation and 
in antenna beamforming. In this paper, the performance of an 
auto-regressive, super-resolution beamforming technique is 
analyzed and compared with other high-resolution methods. The 
AR coefficients, which represent an IIR filter, are determined 
adaptively using the Least Mean Square (LMS) algorithm. A 
linear algebra-based analysis is developed to show that the gain 
in signal to noise ratio is determined by the order of the 
extrapolation filter. It is also shown that if the filter coefficients 
are chosen such that there are poles on the unit circle 
corresponding to each source present, then the interference 
between the sources can be eliminated. However, if a pole is not 
placed on the unit circle for any given source, then it may 
interfere with the other sources. This will yield no improvement 
in signal to interference plus noise ratio. This observation is of 
great importance in systems such as Space Division Multiple 
Access (SDMA), where separating the signals from sources that 
utilize the same frequency resources is critical. 

1. INTRODUCTION 

Smart antenna systems have been proposed for increasing 
capacity and throughput in wireless voice and data networks [1-
2]. Smart antenna systems are generally adaptive antenna arrays 
that can adapt to a changing signal environment. In mobile 
communication systems, the subscriber is generally in motion, 
which results in the link between the subscriber and the base 
station (BS) constantly changing. Smart antenna systems are 
equipped with fast, adaptive signal processing algorithms, which 
can adapt to these changes in the communication link. 

In smart antennas, adaptive signal processing algorithms 
accomplish two objectives. First they estimate the direction of 
arrival (DoA) of the received signals and then use this 
information to form an antenna beam that places nulls in the 
directions of signals of no interest and maximizes the gain in the 
direction of the signal of interest.  A multitude of algorithms have 
been developed for estimating the DoA of the received signals [3-
5]. These techniques cover a variety of different signal processing 
techniques – from the standard delay-and-sum technique [3] to 
high resolution techniques such as auto-regressive methods [6], 
the Capon method [4], and signal sub-space methods such as the 
MUSIC algorithm [5].  

High-resolution techniques such as MUSIC provide accurate 
estimates of DoA. However, they do not preserve the fidelity of 
the signals. In communications applications, the primary 
objective is the extraction of information from the received signal 
with a high degree of fidelity. This requires that the effects of 
system noise and multiple access interference (MAI) or co-
channel interference from other users be kept to a minimum [3]. 
For high-resolution techniques to be useful in wireless systems, 
they need to be coupled with high-resolution beamforming 
algorithms that can preserve the fidelity of the received signals 
from separate sources. 

For an array of size L, the beamwidth is given by λ/L. However, 
in most wireless applications, arrays are limited to a few elements 
(e.g., 4). This limits the effective beamwidth of the array. In this 
study, spatial extrapolation is used for both direction finding and 
super-resolution beamforming. Unlike standard modern spectral 
analysis, in this application actual extrapolation is implemented 
to achieve super-resolution beamforming. The AR coefficients 
are found adaptively using the LMS algorithm [7]. This makes 
the algorithm well suited for wireless applications where the 
users are generally mobile.  

2. BEAMFORMING 

Figure 1 shows the standard antenna array configuration used in 
many beamforming problems. The antenna measurements, which 

are represented by vector x̂ , are multiplied by the weights of a 
steering vector and then summed to produce the desired output.  
The steering vector, ŵ , will determine the direction of the beam 
and the associated beam pattern. The output is given by 

xwy H ˆˆ=                                     (1) 

Figure 1 - Antenna array processor 
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In adaptive beamforming, the beamformer algorithm first 
estimates the directions of arrival (DoA) of the received signals 
and then determines the weights of the appropriate steering 
vector [8]. The next section discusses some of the existing high-
resolution DoA algorithms and their performance.   

3. HIGH RESOLUTION ALGORITHMS 

Two widely used high resolution algorithms are the Minimum 
Variance Distortionless Response (MVDR) beamformer and the 
Multiple Signal Classification (MUSIC) algorithm. The spatial 
power spectrum of the MVDR beamformer (also known as the 
Capon beamformer) is given by [4] 
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where φ is the DoA and H
xx xxR ˆˆ=  is the spatial correlation 

matrix of the input signal. The vector, )(ˆ φa , is given by 

]....,,,1[)(ˆ )1(2 0 ∆−∆∆= Njjj eeea φ ,                (3) 

where φsin0dk=∆  and d is the separation between array 

elements. Similarly, the spatial power spectrum for MUSIC is 
given by [5] 
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where nnR  is the spatial correlation matrix of the system noise. 

The noise correlation matrix is determined by subtracting the 
signal sub-space from the measurement (signal-plus-noise) space. 
The signal sub-space is estimated by associating the signal sub-
space with the eigenvectors corresponding to the largest 

eigenvalues of xxR .

Having found the DoA, the next step is to estimate the different 
signals by designing an antenna beam that maximizes the signal 
strength from the signal of interest while minimizing (ideally 
nullifying) the interference from the signals of no interest.  If 
nulls are placed in the directions of the signals of no interest, then 
the signal of interest will be noise limited since the interference is 
zero. Figure 2 shows the output signal to interference plus noise 
ratio ( oSINR ) for two different input signal to noise ratios 

( iSNR ), for two transmitters separated by different angles of 

separation. The DoA’s were estimated using the MUSIC 
algorithm. When the angles of separation are large, oSINR  is 

approximately 6dB better than iSNR . This is because the array 

gain of a 4-element array is 4. However, at smaller angles of 
separation, the gain in the direction of the signal of interest is 
reduced. This is because a null cannot be placed in the direction 
of the signal of no interest, without reducing the gain in the 
direction of the signal of interest. The reduction in gain will 
depend on the beamwidth, which is limited by the size of the 
array aperture.      

Figure 2 – Output signal to interference plus noise ratio for the 
noise-limited case. 

Another strategy is to point the beam in the direction of the signal 
of interest while keeping the interference low but not zero. Such 
systems will be interference limited. MVDR beamformer works 
this way, when the sources are closely located. In this case, the 
main beam is pointed in the direction of the signal of interest. 
However, these systems will also suffer from the same dilemma – 
how to reduce interference without compromising the array gain 
in the direction of the signal of interest. Figure 3 shows this 
result. The oSINR  at the output is plotted as a function of the 

angle of separation for two transmitters for different input signal 
to noise ratios. The array is assumed to be a 4-element array. The 
interference source is assumed to be at the same power level as 
the signal of interest.  For large separations, the signal to noise 
plus interference ratio is given by the output signal to noise ratio 
of the system, which in this case is 6dB above iSNR . However, 

when the transmitters are closely located, the oSINR  will be 

interference limited and will quickly approach 0dB, which is the 
signal to interference ratio.  

Figure 3 – Output signal to interference plus noise ratio for the 
interference-limited case. 

Figures 2 and 3 suggest that in SDMA-type systems where the 
separation of signals from closely located transmitters is 
imperative, standard high-resolution DoA algorithms are of 
limited use because the high-resolution is only applicable to the 
DoA. These algorithms do not provide added capability as far as 
separating signals from closely located transmitters. This requires 
super-resolution beamforming where the effective beamwidth is 
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narrower than λ/L. In the next section, the performance of AR-
based super-resolution beamforming is analyzed with respect to 
noise and interference.   

4. PERFORMANCE OF SUPER-RESOLUTION 
BEAMFORMING  

The AR coefficients can be estimated by minimizing the error 
between the predicted signal and the measured signal. If { }kx
represents the set of signals measured at each antenna element, 
then the linear predictor may be written as 
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In this method, the AR beamforming coefficients are determined 
adaptively by using the LMS algorithm [7-8]. Applying the LMS 
algorithm to the antenna array elements yields 
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Equations (6) and (7) are applied to the antenna array 
measurements to find the linear relationship between the antenna 
elements. Having found the AR coefficients, which define this 
linear relationship, the measurements are then extrapolated to a 
much larger virtual array. The synthesized array size is 
determined by the desired resolution of the super-resolution 
processing. The properties of the super-resolution technique are 
investigated next.

The performance of the super-resolution algorithm is studied by 
developing an analysis method based on linear algebra. Assume 
an Mth order extrapolation scheme. If 1ˆ +Nx  and Nx̂  are vectors 

which represent the sequence of values being extrapolated, such 
that  
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H is an M×M matrix which can be written in terms of its spectral 
components as [9] 
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where the iλ ’s  are the eigenvalues of H and  the iE ’s represent 

the spectral components given by [9] 

1−= PPDE ii ,                             (11) 

where P represents the matrix consisting of the eigenvectors of H
such that  

DHPP =−1  ,                               (12) 

and iD  is the diagonal matrix, where all the diagonal elements 

except the ith value of D are set to zero. The eigenvalues of H are
given by the roots of its characteristic equation, 
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Equation (13) is the same polynomial equation, which gives the 
poles of the IIR filter [7]. Hence the eigenvalues of H are the 
same as the complex poles of the Mth order IIR filter defined by 
the filter coefficients, [ ]Maaa ,...., 21 . Using equation (9), the 

extrapolation can be generalized for any n as [9] 
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This is because ijji EE δ=  [9]. From equation (14), it is clear 

that only iE ’s where 1≥iλ  will contribute towards the 

extrapolation for large values of n. For high signal to noise ratios, 
the LMS algorithm will produce a single pole on the unit circle 
for directions corresponding to each of the received signals, while 
the other poles will fall inside the unit circle [7]. From equation 
(14), only these poles on the unit circle will contribute towards 

nNx +ˆ .  Equation (14) can then be re-written as  
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where MM <0  is the number of sources.  

4.1 Noise Performance   

In standard array processing, the improvement in signal to noise 
ratio is given by the number of elements in the array. It appears 
that in the case of extrapolation, the improvement in signal to 
noise ratio could be quite significant. This would be true if the 
noise in the extrapolated array was uncorrelated as it is in the 
case of the real array. However, during extrapolation, noise is 
extrapolated in such a manner that noise from the portion of the 
spatial noise spectrum that corresponds to the directions of the 
received signals will be extrapolated through the elements of the 
virtual array.  Thus the noise in the extrapolated virtual array is 
not uncorrelated.  

The properties of noise can be studied using equation (15).  
Equation (15) says that for large n, only signal components in a 
sub-space of dimension 0M , from a measurement space of M,

will be extrapolated. If one uses an Mth order extrapolation with 
only one pole on the unit circle ( 10 =M ), then all but one of the 

spectral components will fall out of equation (15). If the noise is 
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assumed to be white, it will be distributed equally in all M
dimensions of the measurement space. However, only noise in a 
single direction will get extrapolated out for large n. This will 
yield a signal to noise improvement of M, which is the order of 
the extrapolation.  

4.2 Interference Rejection    

The poles of the IIR filter will correspond to the DoA of the 
different received signals [7]. The LMS algorithm will 
automatically determine the set of AR coefficients. One of the 
implicit properties of the AR process is that the IIR filter 
automatically decouples the contributions from all the poles. 
However, this will only occur if the poles of the filter are 
properly associated with DoA of all the sources. 

Interference rejection can be studied by using equation (15). If 
there are two sources and an Mth order extrapolation is used with 
a single pole corresponding to the direction of one of the sources, 
on the unit circle ( 10 =M ), then the interference between the 

second source and the first source will depend on the operation 

021 x̂E , where 02x̂  is the vector which represents the actual 

measurements from the second source. For this case, 
HxxE 01011 ˆˆ= , where 01x̂  is the vector which represents the  

measurements from the first source. Thus the interference will be 

given by 0201 ˆˆ xx H , which is the projection of the measurement 

vector representing the second source onto the measurement 
vector representing the first source. This will be exactly the same 
as what is shown in Figure 3, where the main beam is pointed at 
the first source and the interference will depend on the projection 
of the second source onto the direction of the first source.  

Figure 4 - Output signal to interference plus noise ratio for the 
extrapolated array where n=32. 

If instead of one pole, two poles corresponding to the directions 
of each of the two sources are used, then since 

ijji EE δ= , 0ˆ021 =xE  and 0ˆ012 =xE . Thus there will be no 

interference between the two sources. Figure 4 shows the oSINR

for two separate fourth order extrapolation cases with two 
sources of equal power separated by different angles of 
separation. iSNR  is assumed to be 20dB for both cases. The 

extrapolation is carried out for n=32. The first extrapolation is 
done using a single pole corresponding to the signal of interest on 

the unit circle. The second extrapolation is done using two poles 
corresponding to the two directions of the two sources, on the 
unit circle. In the first case, oSINR  follows the same general 

trend as the corresponding curve in Figure 3. In the second case, 

oSINR  remains flat around 26dB (a gain of 4) down to very 

small angles of separation, when it appears to decrease because 
the extrapolation distance was not sufficient to separate the two 
sources. Increasing the extrapolation distance can improve the 
performance for these angles of separation.   

5. CONCLUSIONS AND FUTURE WORK 

A linear algebra-based formulation is used to analyze the 
performance of super-resolution beamforming techniques, which 
utilize AR models. It is shown that the improvement in signal to 
noise ratio is given by the order of the AR process. It is also 
shown that if the AR coefficients produce poles on the unit circle 
for the directions corresponding to each of the received sources, 
then it is possible to suppress the interference between the 
sources. This observation is of great importance in systems such 
as Space Division Multiple Access (SDMA), where separating 
the signals from sources that utilize the same frequency resources 
is an absolute imperative. 

The analysis presented in this paper deals with direct path 
propagation only. In the presence of multipath propagation, 
reducing interference will be significantly more complicated.  In 
the future, attempts will be made to minimize multipath 
interference using super-resolution beamforming. Algorithms, 
which utilize the correlation between the multipath components, 
will be investigated. 
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