
JOINT, FRACTIONAL RESAMPLER WITH DELAY EQUALIZATION FOR HIGH
SYNCHRONIZATION ACCURACY WITH A REDUCED NUMBER OF SAMPLES PER SYMBOL

Ghassan Maalouli, General Dynamics, Scottsdale, AZ.

Don R. Stephens, CommLargo Inc.

ABSTRACT
Software defined radios typically have asynchronous
digital sampling relative to the received symbol rates.
This architecture allows the same RF front end and
digitization to be used for many waveforms and symbol
rates, but requires the demodulator to generate symbol-
based samples from the asynchronous input samples. In
this paper, we propose an innovative method for
resampling signals with a low number of samples per
symbol. A method for jointly removing timing delay and
timing drift is also provided. This structure is highly
efficient, requires a low number of taps and achieves
superior real-time performance.

1 Theoretical Derivation
Following the development in [1-2], we model the
resampling problem as a conversion of the discrete input
samples back into the analog domain and then resampling
at the desired timing instants. In analog-to-digital
conversion, a reconstruction filter interpolates the samples
and is typically implemented as a sinc function. Our
resampler presumes the existence of a hypothetical analog
to digital converter that changes the signal into an analog
signal then samples the analog signal at the desired sample
rate. Assuming that the signal x(n) is sampled at a rate Ts.
The analog signal at the output of an A/D is given by:

� −=
m

sIs mTthmTxty)().()(Eq. 1

Where hI is the reconstruction filter with a sinc impulse
response. If this signal is now sampled at a new sample
rate Ti, the new signal can be represented as:

� −=
m

siIsi mTkThmTxkTy)().()(Eq. 2

To describe the indexing between input and output
samples we must define the following variables:

���

�
���

�
=

s

I
k T

kT
floorm Eq. 3

where mk is the basepoint timing index.

1

mod ���

�
���

�
=

s

I
k T

kTµ Eq. 4

µk is the fractional timing index which is bounded to [0,1]

These variables allow us to write the input signal as:

[] []

() ()

(). ()

() . ()

i k k

s I i s
m

k s I k s
i

y kT y m

x mT h kT mT

x m i T h i T

µ

µ

= + =

− =

− +

�
�

 Eq. 5

Where mmi k −= is the filter index and runs over

the number of taps in the filter.

The timing relationship between input and output can be
illustrated as shown in Figure 1.

Figure 1: Resampler Input/Output Timing Relationship

1.1 Delay & Timing Drift Equalization
Equation 5 does not consider delay equalization. We
extend the capability of the resampler with delay
equalization which provides joint resampling and symbol
timing correction. A timing shift in the signal can be
considered a shift in the filter impulse response provided
the system is LTI which is the underlying assumption for
the preceding derivation. Consider a received signal, r(t).
Taking propagation delay into account, the signal can be
represented as:

(mk-1)Ts mkTs

(k-1)Ti kTi

Basepoint
Index

Fractional
Timing

V - 3490-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

� −−= −)(.).()()(mTthetxtr tj c τωτ (5)

Let u = t-τ. We rewrite (5) as

� −+=)(.).()()(mTuheuxtr uj c τω (6)

Equation (6) indicates the delay in the channel can be
expressed in terms of a delayed filter impulse response.
The missing step is the estimation of the delay factor to
use in order to equalize the channel delay. However, with
the signal model that we have developed, not only we can
track fixed channel delay but we can additionally track
timing drift between the input sample clock and the output
sample clock. We model the fixed delay as an addition of
a fixed quantity to the fractional timing and is described as
the zero order error. The drift between the input and
output clock is modeled by the addition of a fixed quantity
to the ratio Ts/Ti. Estimating the delay and drift can be
done via the use of a generic timing error detector [3]. A
maximum likelihood approximation of a timing detector is
an early gate late gate with a loop filter. In a classical
design, the early/late gate circuit provides a zero order
estimate for timing error by advancing or retarding the
perceived correct starting point of the symbol. In a
sampled system, this is done by referencing the sample
index of the symbol’s leading edge. The error estimate
from the early/late gate is filtered with the loop filter. As
a state space model, the filter provides both a zero order
estimate representing fixed delay and a first order estimate
representing clock drift. These quantities are then used to
compute an adjusted basepoint timing reference, mk, and
an adjusted fractional timing reference, µ. µ provides the
correction into the interpolation filter to compute the
output samples. Sinc filter coefficients must be
specifically computed to interpolate the input samples at
the desired timing offsets. Lookup tables can provide the
coefficients in real-time implementations..

To facilitate the understanding of this design, we
introduce the system block diagram.

Figure 2: Resampler with Delay Equalization Block
Diagram

Buffering and
Shift Logic

Convolution
Operation

Output
Samples

Timing Error
Detector

Loop Filter

Interpolator

Filter
Coefficients

Adaptive
Algorithm

ε

µ

m∆
h

Input
Samples

The buffering and shift logic (BSL) block receives
complex envelope samples at the input sample rate. A
control input is ∆m, which specifies the number of
samples to shift into the interpolator filter. There are only
two possibilities for ∆m to control the sample shift; either
no shift if ∆m is zero or a ∆m shift if ∆m is greater than
zero. ∆m and µ are computed by the adaptive algorithm.
If ∆m equals zero, then the BSL will not shift any new
samples into the filter structure before computing a new
sample. If ∆m is greater than zero, the shift logic will shift
∆m samples into the filter structure before an output is
computed. The details of the computation of ∆m &µ are
listed in the Adaptive algorithm description. Computation
of the interpolator output is listed in the convolution
block.

1.2 Adaptive Algorithm
The adaptive algorithm generates updates for ∆m &µ to
control input samples and delay adjustments. ∆m controls
samples shifted into the filter structure as described
earlier. µ however, functions as a delay to derive the filter
coefficients. The adaptive algorithm is divided into two
steps: initialization and run-time operation.

1.3 Initialization
Parameters for the adaptive algorithm are initialized in the
following fashion.

1) Compute the ratio of the input sample rate to the

desired output sample rate.

i

s

s

i

F

F

T

T
W ==

V - 350

➡ ➡

Where Ts is the input sample rate and Ti is the output
sample rate. Note that these are sample rates and not
symbol rates.
2) Initialize: m(0) = µ(0) = 0.

1.4 Resampling Operation
To produce output samples, we must compute µ and ∆m
which include corrections for timing delay and timing
drift. The timing delay estimate and the timing drift
estimate are derived from the filtered error estimate. The
adaptation proceeds as follows.

Update the basepoint timing index. Include the
Timing drift and the timing delay estimates from the
timing error detector.

�

�
�
�

�
++++=+ ττµ �.)()()1(n

T

T
kkmkm

s

i where

�•
 indicates the largest integer less than •

Update the fractional timing index

1mod

.)()1(���

�
���

�
+++=+ ττµµ �n

T

T
kk

s

i

Compute the delta. If equals 0, do not shift any
samples into the filter. Otherwise, shift ∆m samples
into the filter.

)()1(kmkmm −+=∆

2 Table Driven Implementation
For real-time operation, it may be necessary to use look-
up tables for the filter coefficients. The table size is
determined by system considerations. For example, if an
upper bound of 2.5% timing accuracy is desired and the
system memory can handle the presence of a table of Lx20
where L is the number of taps, then interpolation of
coefficients is not required. Otherwise, a first or second
order polynomial is used to interpolate the filter
coefficients. For coefficient interpolation, µ is quantized
to the number of entries in the table. The residue
parameterizes the interpolating polynomial.

[] rrq NQ µµµµµ +=+= , Eq. 6

 Q[] is the quantization operator

() 2
210 .. rrh µαµααµ ++= Eq. 7

N is the number of delay steps in the table and αj are
polynomial coefficients computed using Lagrange’s or
divided difference methods. The data used in computing
the coefficients are the table values that bound the value
µ.

2.1 Interpolator
The interpolator of Figure 2 is a linear transversal filter
structure with a mechanism that controls data transfer into
the filter’s memory. This is illustrated in Figure 4.

Figure 3: Interpolator Filter Structure

Control
Logic Z-1 Z-1 Z-1

x

m∆
Nx 1−Nx 1x 0x

()µ0h ()µ1h ()µ1−Nh ()µNh

Σ
y

Where x represents the input samples and m∆ represents
the number of samples to be shifted into the filter.

2.2 Advantages
This design offers a significant reduction in the
computational complexity with table lookup. The
example presented in the introduction section which
requires 1235 taps to achieve requires significantly more
memory and more operations per output than a design
with a table 11x20 in size which requires only eleven
operations per output.

This design allows the incorporation of symbol timing
correction which yields results highly accurate results at a
significant less cost than the classical early/late gate
designs. As discussed earlier, this design is not limited to
an Early/Late gate but any timing error detector can be
used. This design can correct both first order and second
order timing errors.

This algorithm was successfully implemented on the
Navy’s software defined radio’s Digital Modular Radio
(DMR).

3 Simulations
Three examples are demonstrated: using the algorithm as
a resampler only, resampler with first order timing
correction and resampler with second order timing
correction.

V - 351

➡ ➡

Case 1:
For this case, we illustrate the operation of the algorithm
as an interpolator with a factor of 2. No timing correction.

Figure 4: Algorithm Output for an Interpolation Factor of
2 with no Timing Errors

m µ ∆m Comment
0 0 1 ∆m = 1. Shift one sample.

Interpolate with µ=0
0 .5 0 ∆m = 0. For the same sample set,

 interpolate with µ=0.5
1 0 1 ∆m = 1. Shift one sample.

Interpolate with µ=0
1 .5 0 ∆m = 0. For the same sample set,

interpolate with µ=0.5
2 0 1 ∆m = 1. Shift one sample.

Interpolate with µ=0
2 .5 0 ∆m = 0. For the same sample set,

interpolate with µ=0.5

For each input sample, two samples are produced, one at a
delay of zero and one at a delay of 0.5.

For a second example, we demonstrate decimation by a
factor of 4.

Figure 5: Algorithm Output for a Decimation Factor of 4
with no Timing Errors

m µ ∆m Comment
0 0 1 ∆m = 1. Shift one sample.

Interpolate with µ=0
4 0 4 ∆m = 4. Shift 4 samples.

Interpolate with µ=0
8 0 4 ∆m = 4. Shift 4 samples.

Interpolate with µ=0
12 0 4 ∆m = 4. Shift 4 samples.

Interpolate with µ=0
16 0 4 ∆m = 4. Shift 4 samples.

Interpolate with µ=0
20 0 4 ∆m = 4. Shift 4 samples.

Interpolate with µ=0
24 0 4 ∆m = 4. Shift 4 samples.

Interpolate with µ=0

For every 4 input samples we compute one output sample
thus achieving a 4 to 1 decimation factor.

Case 2:

For this example we demonstrate the operation of the
algorithm when a fixed delay correction is required. We
assume that a 20% symbol delay is correction is required.
This would be the correction that is received by the
algorithm from the timing error detector.

In this example, we have an interpolation factor of two.
With no delay, we would expect an output similar to case
1 where the samples are being interpolated with a zero
delay and 0.5 delay. However, since we have a fixed
delay adjustment of 0.2 symbols, we expect the delta
between the samples to remain at 0.5 and the delay to be
constant at 0.2. As we can observe from the computations
in Figure 7, the difference between the µ values is 0.5
indicating that the difference between the samples is fixed
at 0.5 as expected. However, the location of the samples
is now offset by 0.2 symbols because the first sample
appears at 0.7 rather than 0.5. The next sample appears at
1.2 rather than 1.0 with the offset continuing.

Figure 6: Algorithm Output for an Interpolation Factor of
2 with 0.2 Symbol Delay Error

m µ ∆m Comment
0 0 0 ∆m = 0. Shift 0 samples.

Interpolate with µ=0
0 0.7 0 ∆m = 0. Shift 0 samples.

Interpolate with µ=0.7
1 0.2 1 ∆m = 1. Shift 1 sample.

Interpolate with µ=0.2
1 0.7 0 ∆m = 0. Shift 3 samples.

Interpolate with µ=0.7
2 0.2 1 ∆m = 1. Shift 1 sample.

Interpolate with µ=0.2
2 0.7 0 ∆m = 0. Shift 0 samples.

Interpolate with µ=0.7
3 0.2 1 ∆m = 1. Shift 1 sample.

Interpolate with µ=0.2
3 0.7 0 ∆m = 0. Shift 0 samples.

Interpolate with µ=0.7

4 References
[1] Gardner F., “Interpolation in Digital Modems – Part I:
Fundamentals”, IEEE Transactions on Communications,
VOL. 41, No. 3, March 1993
[2] Erup L., Gardner F., Harris R. “Interpolation in Digital
Modems – Part II: Implementation and Performance”,
IEEE Transactions on Communications, Vol. 41, No. 6,
June 1992
[3] “Digital Communications Receivers”, H. Meyer, M.
Monocalaey and S.A. Fechtel, Wiley Books

V - 352

➡ ➠

