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ABSTRACT 
Software defined radios typically have asynchronous 
digital sampling relative to the received symbol rates.  
This architecture allows the same RF front end and 
digitization to be used for many waveforms and symbol 
rates, but requires the demodulator to generate symbol-
based samples from the asynchronous input samples.  In 
this paper, we propose an innovative method for 
resampling signals with a low number of samples per 
symbol.  A method for jointly removing timing delay and 
timing drift is also provided. This structure is highly 
efficient, requires a low number of taps and achieves 
superior real-time performance. 
 

1 Theoretical Derivation 
Following the development in [1-2], we model the 
resampling problem as a conversion of the discrete input 
samples back into the analog domain and then resampling 
at the desired timing instants.  In analog-to-digital 
conversion, a reconstruction filter interpolates the samples 
and is typically implemented as a sinc function.  Our 
resampler presumes the existence of a hypothetical analog 
to digital converter that changes the signal into an analog 
signal then samples the analog signal at the desired sample 
rate.  Assuming that the signal x(n) is sampled at a rate Ts.  
The analog signal at the output of an A/D is given by: 
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Where hI is the reconstruction filter with a sinc impulse 
response.  If this signal is now sampled at a new sample 
rate Ti, the new signal can be represented as: 
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To describe the indexing between input and output 
samples we must define the following variables: 
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where mk is the basepoint timing index. 
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µk is the fractional timing index which is bounded to [0,1] 

 
These variables allow us to write the input signal as: 
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Where   mmi k −=   is the filter index and runs over 

the number of taps in the filter. 
 
The timing relationship between input and output can be 
illustrated as shown in Figure 1. 
 

Figure 1: Resampler Input/Output Timing Relationship 

 

 

1.1 Delay & Timing Drift Equalization 
Equation 5 does not consider delay equalization.  We 
extend the capability of the resampler with delay 
equalization which provides joint resampling and symbol 
timing correction.  A timing shift in the signal can be 
considered a shift in the filter impulse response provided 
the system is LTI which is the underlying assumption for 
the preceding derivation. Consider a received signal, r(t).  
Taking propagation delay into account, the signal can be 
represented as: 
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Let u = t-τ.  We rewrite (5) as 
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Equation (6) indicates the delay in the channel can be 
expressed in terms of a delayed filter impulse response.  
The missing step is the estimation of the delay factor to 
use in order to equalize the channel delay.  However, with 
the signal model that we have developed, not only we can 
track fixed channel delay but we can additionally track 
timing drift between the input sample clock and the output 
sample clock.  We model the fixed delay as an addition of 
a fixed quantity to the fractional timing and is described as 
the zero order error.  The drift between the input and 
output clock is modeled by the addition of a fixed quantity 
to the ratio Ts/Ti.  Estimating the delay and drift can be 
done via the use of a generic timing error detector [3].  A 
maximum likelihood approximation of a timing detector is 
an early gate late gate with a loop filter.  In a classical 
design, the early/late gate circuit provides a zero order 
estimate for timing error by advancing or retarding the 
perceived correct starting point of the symbol.  In a 
sampled system, this is done by referencing the sample 
index of the symbol’s leading edge.  The error estimate 
from the early/late gate is filtered with the loop filter.  As 
a state space model, the filter provides both a zero order 
estimate representing fixed delay and a first order estimate 
representing clock drift.  These quantities are then used to 
compute an adjusted basepoint timing reference, mk, and 
an adjusted fractional timing reference, µ.  µ  provides the 
correction into the interpolation filter to compute the 
output samples. Sinc filter coefficients must be 
specifically computed to interpolate the input samples at 
the desired timing offsets.  Lookup tables can provide the 
coefficients in real-time implementations.. 
 
To facilitate the understanding of this design, we 
introduce the system block diagram. 

Figure 2: Resampler with Delay Equalization Block 
Diagram 
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The buffering and shift logic (BSL) block receives 
complex envelope samples at the input sample rate.  A 
control input is ∆m, which specifies the number of 
samples to shift into the interpolator filter.  There are only 
two possibilities for ∆m to control the sample shift; either 
no shift if ∆m is zero or a ∆m shift if ∆m is greater than 
zero. ∆m and µ are computed by the adaptive algorithm.  
If ∆m equals zero, then the BSL will not shift any new 
samples into the filter structure before computing a new 
sample. If ∆m is greater than zero, the shift logic will shift 
∆m samples into the filter structure before an output is 
computed.  The details of the computation of ∆m &µ  are 
listed in the Adaptive algorithm description.  Computation 
of the interpolator output is listed in the convolution 
block. 
 

1.2 Adaptive Algorithm 
The adaptive algorithm generates updates for ∆m &µ to 
control input samples and delay adjustments. ∆m controls 
samples shifted into the filter structure as described 
earlier. µ however, functions as a delay to derive the filter 
coefficients.  The adaptive algorithm is divided into two 
steps: initialization and run-time operation. 
 

1.3 Initialization 
Parameters for the adaptive algorithm are initialized in the 
following fashion. 
 
1) Compute the ratio of the input sample rate to the 

desired output sample rate. 
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Where Ts is the input sample rate and Ti is the output 
sample rate.  Note that these are sample rates and not 
symbol rates. 
2) Initialize:  m(0) = µ(0) = 0. 
 

1.4 Resampling Operation 
To produce output samples, we must compute µ and ∆m 
which include corrections for timing delay and timing 
drift.  The timing delay estimate and the timing drift 
estimate are derived from the filtered error estimate.  The 
adaptation proceeds as follows. 
 

Update the basepoint timing index.  Include the 
Timing drift and the timing delay estimates from the 
timing error detector.  
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Update the fractional timing index 
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Compute the delta.  If equals 0, do not shift any 
samples into the filter.  Otherwise, shift ∆m samples 
into the filter. 

)()1( kmkmm −+=∆  

 

2 Table Driven Implementation 
For real-time operation, it may be necessary to use look-
up tables for the filter coefficients.  The table size is 
determined by system considerations.  For example, if an 
upper bound of 2.5% timing accuracy is desired and the 
system memory can handle the presence of a table of Lx20 
where L is the number of taps, then interpolation of 
coefficients is not required.  Otherwise, a first or second 
order polynomial is used to interpolate the filter 
coefficients.  For coefficient interpolation, µ  is quantized 
to the number of entries in the table.  The residue 
parameterizes the interpolating polynomial. 
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 Q[] is the quantization operator 
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N is the number of delay steps in the table and αj are 
polynomial coefficients computed using Lagrange’s or 
divided difference methods.  The data used in computing 
the coefficients are the table values that bound the value 
µ. 
 

2.1 Interpolator 
The interpolator of Figure 2 is a linear transversal filter 
structure with a mechanism that controls data transfer into 
the filter’s memory.  This is illustrated in Figure 4. 

Figure 3:  Interpolator Filter Structure 
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Where x represents the input samples and m∆ represents 
the number of samples to be shifted into the filter. 

 
2.2 Advantages 
This design offers a significant reduction in the 
computational complexity with table lookup.  The 
example presented in the introduction section which 
requires 1235 taps to achieve requires significantly more 
memory and more operations per output than a design 
with a table 11x20 in size which requires only eleven 
operations per output. 
 
This design allows the incorporation of symbol timing 
correction which yields results highly accurate results at a 
significant less cost than the classical early/late gate 
designs.  As discussed earlier, this design is not limited to 
an Early/Late gate but any timing error detector can be 
used.  This design can correct both first order and second 
order timing errors. 
 
This algorithm was successfully implemented on the 
Navy’s software defined radio’s Digital Modular Radio 
(DMR).  

3 Simulations 
Three examples are demonstrated:  using the algorithm as 
a resampler only, resampler with first order timing 
correction and resampler with second order timing 
correction. 
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Case 1: 
For this case, we illustrate the operation of the algorithm 
as an interpolator with a factor of 2.  No timing correction. 
 

Figure 4: Algorithm Output for an Interpolation Factor of 
2 with no Timing Errors 

m µ ∆m Comment 
0 0 1 ∆m = 1.  Shift one sample.  

Interpolate with µ=0 
0 .5 0 ∆m = 0. For the same sample set, 

 interpolate with µ=0.5  
1 0 1 ∆m = 1.  Shift one sample.  

Interpolate with µ=0 
1 .5 0 ∆m = 0. For the same sample set,  

interpolate with µ=0.5 
2 0 1 ∆m = 1.  Shift one sample. 

Interpolate with µ=0 
2 .5 0 ∆m = 0. For the same sample set,  

interpolate with µ=0.5  
 
For each input sample, two samples are produced, one at a 
delay of zero and one at a delay of 0.5. 
 
For a second example, we demonstrate decimation by a 
factor of 4. 
 

Figure 5:  Algorithm Output for a Decimation Factor of 4 
with no Timing Errors 

m µ ∆m Comment 
0 0 1 ∆m = 1.  Shift one sample.  

Interpolate with µ=0 
4 0 4 ∆m = 4. Shift 4 samples.  

Interpolate with µ=0 
8 0 4 ∆m = 4. Shift 4 samples.   

Interpolate with µ=0 
12 0 4 ∆m = 4. Shift 4 samples.   

Interpolate with µ=0 
16 0 4 ∆m = 4. Shift 4 samples.   

Interpolate with µ=0 
20 0 4 ∆m = 4. Shift 4 samples.   

Interpolate with µ=0 
24 0 4 ∆m = 4. Shift 4 samples.   

Interpolate with µ=0 
 
 
For every 4 input samples we compute one output sample 
thus achieving a 4 to 1 decimation factor. 
 
Case 2:  

For this example we demonstrate the operation of the 
algorithm when a fixed delay correction is required. We 
assume that a 20% symbol delay is correction is required.  
This would be the correction that is received by the 
algorithm from the timing error detector. 
 
In this example, we have an interpolation factor of two.  
With no delay, we would expect an output similar to case 
1 where the samples are being interpolated with a zero 
delay and 0.5 delay.  However, since we have a fixed 
delay adjustment of 0.2 symbols, we expect the delta 
between the samples to remain at 0.5 and the delay to be 
constant at 0.2.  As we can observe from the computations 
in Figure 7, the difference between the µ values is 0.5 
indicating that the difference between the samples is fixed 
at 0.5 as expected.  However, the location of the samples 
is now offset by 0.2 symbols because the first sample 
appears at 0.7 rather than 0.5.  The next sample appears at 
1.2 rather than 1.0 with the offset continuing. 
 

Figure 6: Algorithm Output for an Interpolation Factor of 
2 with 0.2 Symbol Delay Error 

m µ ∆m Comment 
0 0 0 ∆m = 0.  Shift 0 samples.  

Interpolate with µ=0 
0 0.7 0 ∆m = 0. Shift 0 samples.   

Interpolate with µ=0.7  
1 0.2 1 ∆m = 1. Shift 1 sample.   

Interpolate with µ=0.2  
1 0.7 0 ∆m = 0. Shift 3 samples.   

Interpolate with µ=0.7  
2 0.2 1 ∆m = 1. Shift 1 sample.   

Interpolate with µ=0.2  
2 0.7 0 ∆m = 0. Shift 0 samples.   

Interpolate with µ=0.7  
3 0.2 1 ∆m = 1. Shift 1 sample.   

Interpolate with µ=0.2  
3 0.7 0 ∆m = 0. Shift 0 samples.   

Interpolate with µ=0.7  
 
 

4 References 
[1] Gardner F., “Interpolation in Digital Modems – Part I: 
Fundamentals”, IEEE Transactions on Communications, 
VOL. 41, No. 3, March 1993 
[2] Erup L., Gardner F., Harris R. “Interpolation in Digital 
Modems – Part II: Implementation and Performance”, 
IEEE Transactions on Communications, Vol. 41, No. 6, 
June 1992 
[3]  “Digital Communications Receivers”, H. Meyer, M. 
Monocalaey and S.A. Fechtel, Wiley Books 

V - 352

➡ ➠


