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ABSTRACT

A new architecture for the implementation of round robin
arbiters (RRAs) with one-hot encoded grant signals is in-
troduced in this paper. The proposed architecture uses
a binary tree search (BTS) mechanism in conjunction
with a unit-weighted representation of the priority index.
It is shown that the proposed BTS RRA architecture
achieves very significant improvements on time-area com-
plexity compared to the most efficient convetional RRA
configuration to date.

1. INTRODUCTION

Priority encoders find extensive applications in computer
systems with shared resources. When several blocks in a
system require simultaneous access to a shared resource, a
scheduling decision has to be made to allow a single block to
use the resource. This decision is usually made by employ-
ing a priority encoding scheme, whereby a grant to access
the shared resource is issued to the requesting block with
highest precedence as defined by a priority sequence. In a
fixed priority encoder (FPE), the priority sequence is static
and can only be modified by explicitly changing the wiring
of the encoder. On the other hand, a programmable pri-
ority encoder (PPE) implements a dynamical precedence
scheme, where the priority sequence can be easily changed
while in operation. Essentially, PPEs provide the core func-
tionality of round robin arbiters (RRAs). As such, PPEs
are frequently used in networking ASICs and FPGAs, to
implement key functions like switch-fabric scheduling and
queue/port selection in layer 2 and layer 3 switches [1].
With the constantly increasing size of the RRAs required
in current networking devices, the problem of implement-
ing time-area efficient and easily scalable PPEs and RRAs
deserves special attention.

A review of the currently available solutions for the im-
plementation of RRAs is provided in [1]. As highlighted in
[1], the PPE architecture proposed in [2], with further im-
provements suggested in [1], stands out as the most efficient
solution to date for the implementation of RRA arbiters. It
should be noted here that while the original configuration
proposed in [2] operates with binary-encoded grant signals,
the architecture described in [1], targeted for high-speed
performance, uses one-hot encoded grants. This paper ad-
dresses the problem of efficiently designing RRAs with one-
hot encoded grant vectors.

A block-level diagram of the RRA architecture proposed
in [1] is illustrated in Fig. 1. In this architecture, the core
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Fig. 1. Block diagram of an RRA with binary encoded priority/state
vector and one-hot-encoded grant output.

PPE block comprises 2 FPE encoders operating in parallel.
The input to FPEy, r, is the original request vector, req,
while the input to FPE, is a masked version of req, desig-
nated in Fig. 1 as p. As seen from Fig. 1, p is the output
of a mask block whose inputs are the request signals, along
with a priority index, pri. The index pri, also referred to as
the round-robin state vector, points to the current highest-
priority request-line. In operation, the mask block forces to
0 all elements req; of the request vector req, whose index
j is strictly smaller than the decimal value of the binary en-
coded pri, pri,,., and leaves all other elements unchanged.
The mask generation module on the mask block is a binary-
to-thermo encoder, bin2th, whose operation is described in
[1]. Essentially, the thermo-code y¢, of a binary vector x
is a unit-weighted representation of the decimal value of
X, Xdec (i.e., the sum of all the 1’s in yy, is equal to the
base-10 number whose binary code is x). As an example,
the 8-bit thermo-code of x4ec = 5, is y, = 00011111. The
encoder FPE; finds the first nonzero element of the request
vector req and generates a corresponding one-hot grant,
gnt,. On the other hand, FPE; picks the first nonzero
element of req (if any available) beyond (and including)
req[pri,..], and generates a corresponding n-bit one-hot
encoded grant, gnt,. Each FPE block provides an output
qualifier, gntFound,, j € {1,2}, to indicate whether or not
a grant is available at the output of FPE;. The output
multiplexer of the PPE uses gntFound, as a select signal,
and takes gnt = gnt,, if gntFound, = 1, and gnt = gnt,
otherwise. It is to be noted that in the RRA architecture de-
picted in Fig. 1, the priority vector is a binary-encoded rep-
resentation of the previous grant, right-shifted by 1 position
(with the most significant bit of the grant vector assumed
to be the rightmost bit). The shifting operation is achieved
through suitable wiring connections in the rr block.
Hierarchical techniques employing binary tree mecha-
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Fig. 2. Implementation of an 8-bit FPE block employing a BTS
hardware algorithm.

nisms have long been known to provide simple, yet very
efficient implementions of fixed priority encoders [3]. An
example of a binary-tree search (BTS) implementation of
an 8-bit FPE with one-hot grant output is illustrated in
Fig. 2. The BTS FPE encoder depicted in Fig. 2. con-
sists of 2 main modules, designated as select logic and
grant logic. At each logic level ¢, ¢ € {1,2}, the grant
signals gf[i], with k& € {0,...,logon — £ — 1}, and i €
{0,...,271 1}, are partitioned into a high priority subset,
HF = {gF[i],i = 0,...,2° — 1}, and a low priority subset
L = {gf[il,i = 2*,...,2"" —1}. When a select signal
r¢[1] assumes a logic value of 1, there is at least one ele-
ment in Hf that is equal to 1, and therefore all elements in
L%, gated with 75[1], are forced to 0. On the other hand,
if 7¥[1] is 0, no high priority grant is available in H}, and
all grant signals in L¥ are propagated to the next level of
logic, £+ 1. A simple numeric example is indicated on Fig.
2. With a request vector req = 001xxxxx, where x denotes
a don’t care logic value, the grant vector is, as expected,
gnt = 00100000.

By closely investigating the structure and the operation
of the BTS FPE encoders used on an RRA device, this
paper develops a new and more efficient BTS-based design
for PPEs and RRAs with one-hot-encoded grant output.
The proposed BTS architecture for the implementation of
PPE encoders and RRA arbiters is introduced in Section
2, while Section 3 evaluates the performance advantages of
the proposed BTS design.

2. PROPOSED ARCHITECTURE

The proposed PPE/RRA architecture is illustrated in Fig.
3, for a simple case of a block with 8-bit request and grant
vectors. The core PPE block is depicted with continuous
lines, while the additional logic and registers required to
complete an RRA device are drawn using dotted lines. The
proposed PPE architecture consists of 2 select logic mod-
ules, rSelect and pSelect, rpSelect multiplexers, and a grant
logic unit. It can be easily recognized that the rSelect and
pSelect modules in Fig. 3 are essentially the select logic
sub-blocks of the FPE; and FPE> encoders in Fig. 1, when

FPE; and FPE, are implemented using the BTS FPE de-
sign illustrated in Fig. 2. On the other hand, while the
conventional PPE design depicted in Fig. 1 uses 2 com-
plete FPE blocks, each with its own grant logic sub-module,
the proposed PPE architecture requires only one grant logic
module, shared between the rSelect and pSelect blocks by
employing rpSelect multiplexers. Effectively, in the pro-
posed design, the (n—1) 2-bit rpSelect muxes, conveniently
replace the 2n-bit output mux in a conventional PPE de-
sign, allowing the rSelect and pSelect blocks in the proposed
PPE architecture to share the same grant logic unit. In
turn, this should significantly lower the gate-count require-
ments of the proposed PPE configuration compared to the
gate-count of a conventional PPE design, as the bulk of a
BTS FPE block is mainly concentrated in its grant logic
sub-module. Further improvements on both chip area as
well as latency are achieved with the proposed PPE de-
sign by using a unit-weighted priority/state vector, pri,,, .
Essentially, in the proposed PPE architecture, pri,,, is di-
rectly used as a mask vector. Thus, by employing a unit-
weighted priority vector, the proposed RRA architecture
eliminates the need for the 2 encoders denoted on Fig. 1
by 1h2bin and bin2th, therefore significantly improving on
latency, at the expense of increasing the size of the state
register from log, n bits to m bits. As shown in Section
3, the overall tradeoff is very clearly advantageous to the
proposed RRA design.

It should be emphasized here that with the state vector
represented using a unit-weighted encoding, it is very easy
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Fig. 3. Proposed implementation of an 8-bit PPE/RRA block em-
ploying a BTS algorithm and unit weighted priority/state vectors.
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to generate the one-hot output grant, gnt[7:0], by em-
ploying a unit-weighted-to-one-hot (uwTolh) encoder, as
shown in Fig. 3. As seen from Fig. 3, a uwTolh encoder
requires only one level of AND gates. It should also be
pointed out that the unit-weighted encoding used in the
proposed architecture is slightly different from the thermo
codes used in [1]. Denoting by yuw the unit-weighted repre-
sentation, as used in Fig. 3, of a decimal number x4c., and
designating the thermo code of xg4ec by yin, we have that
Yuw = {ywm[n —2:0],1}, i.e., yuw is a left shifted version
of y¢n, with the least significant bit (assumed to occupy the
right-most position) set to 1. Yet another consequence of
using unit-weighted priority vectors, is that the grant logic
module in Fig. 3 is slightly different from its counterpart
in Fig. 2. Specifically, the AND gates depicted with dotted
lines in Fig. 2 have been replaced in Fig. 3 with OR gates.

The proposed PPE/RRA design inherits a hierarchical
structure that is characteristic of all BTS algorithms and
architectures. As a result, a formal proof of correctness of
the operation of the proposed design can be constructed us-
ing mathematical induction. However, due to limited space,
a formal proof of correctness is not included in the present
paper.

The operation of the proposed PPE architecture can be
easily understood by using a few simple examples, indi-
cated on the block diagram depicted in Fig. 3. With
the priority index, pri,,, assuming a fixed value, say
pri,,,[7: 0] = 00011111, the highest and lowest priority re-
quests are, respectively, req[4] and req[5]. Thus, when the
request vector is req[7 : 0] = xxxlxxxx, the unit-weighted
state vector assumes a value of g2 = 00011111, as expected,
with gnt[4] = 1. Whenever nonzero values are present in
the masked request vector, p0, a grant is always given to
the active request of highest priority in p0. For instance, in
the case when req = xxx001xx, and thus p0 = 000001xx,
the state vector is g2 = 00000111, and gnt[2] = 1, as ex-
pected. On the other hand, when there is no active request
line below (and including) the most significant logic-1 in
pri,,,, e.g., when req = 01x00000, the masked request vec-
tor p0 is all zeroes, and a grant is given to the highest
priority request in the vector req itself. Thus, in the case
when req = 01x00000, the state vector is g2 = 01111111,
and, as expected, gnt[6] = 1.

3. PERFORMANCE ANALYSIS

In order to evaluate the improvements on chip area and
timing that can be achieved by employing the proposed
BTS PEE/RRA design compared to using the conventional
architecture described in [1], estimates of gate counts and
latencies have been determined for each building block of
the proposed and conventional RRAs. These estimates were
expressed as functions of the number of input ports (i.e.,
size of the req vector), n, and are listed in Table I for the
components of a conventional RRA, and in Table II for the
building blocks of the proposed RRA design. In Tables I
and II, the gate count is stated as the number of 2-input
gates, while the latency is expressed as number of levels
of 2-input-gate logic. While most of the expressions for
gate-counts and latencies listed in Tables I and II are fairly

straightforward, the gate-count formulae for the bin2th and
1h2bin encoders require some further elaboration.

TABLE 1
ESTIMATION OF GATE COUNT AND LATENCY OF A CONVENTIONAL
IMPLEMENTATION OF AN RRA ARBITER (FIG. 1)

Block Gate Count Levels
(2-input gates) of logic
bin2th 2(n—2) —2(logyn — 1) | logyn—1
Mask Gates n 1
Select Logic n—1 log,n
Grant Logic nlog,n log,n
Output Mux 3n 2
1h2bin *G1h2vin logo,n — 1
Register 7log,n N/A
| RRA I “Grra | 3log,n+1 |

*Ginzpin = 2(n—1) — n (2 + logyn % 2) 2~ Mtee2n/21
“Grra = Ginzvin +8n + (2n + 5)log,n — 4

TABLE 11
ESTIMATION OF GATE COUNT AND LATENCY OF THE PROPOSED
IMPLEMENTATION OF AN RRA ARBITER

Block Gate Count Levels
(2-input gates) | of logic
Mask Gates n 1
r/pSelect Logic n—1 log,n
rpSelect Muxes 3(n—1) 2
Grant Logic nlog,n log,n
uwTolh n—1 1
Register n N/A

| RRA || nlog,n + 14n — 6 | log,n + 4 |

An efficient implementation of a binary-to-thermo en-
coder uses a hierarchical structure, as illustrated in Fig.
4a in the case of a bin2th encoder with 3-bit binary codes.
It can be easily observed from the example illustrated in
Fig. 4a, that, in general, for a bin2th encoder with log,n-
bit binary codes, the number of levels of logic is log,n — 1,
and there are (2t —2) gates on each logic level £. Thus, by
adding together the number of gates on each level of logic,
from £ =1 to £ = log,n—1, the total gate-count of a bin2th
encoder can be expressed as

Goinaen = (22-2)+(2° —2) +...+ (22" —2)
= 22(142+...+2°%2"7%) —2(log,n — 1)
= 2%(2"82""1 _ 1) — 2(log,n — 1)
= 2(n—2)—2(log,n—1). (1)

Fig. 4c illustrates an efficient implementation of a one-
hot-to-binary (1h2bin) encoder with n = 16, in which the
output binary code is denoted by b[3 : 0]. As seen from
Fig. 4c, this encoder requires (n/2 — 1) gates for each of
the bits b[3] and b[0], plus n/4 additional bits for each of
b[2] and b[1]. It can be shown that, in general, when n is
an even power of 2, the gate count of an 1h2bin encoder
implemented using the algorithm illustrated in Fig. 4c is

V-335



given by
Geven = 2-[(n/2—=1) +n/d+... +n/2082"/*7]
= 2n (1 —27'e2"/2) _ 9, (2)

On the other hand, when n is an odd power of 2, the gate
count of an 1h2bin encoder with n inputs is

Godd = 21 (1 _2—“082”/21) _2_,”2—[108;2”/21, (3)

where [z] denotes the smallest integer larger than z. As-
suming that n is a power of 2, and denoting by ”log,n % 2”
the rest of the integer division of log,n by 2 (i.e., log,n % 2
is equal to 1 when n is an odd power of 2, and 0 other-
wise), the expressions (2) and (3) for Geyen and Gogq can
be merged together as

G=2(n—1) — n(2 + log,n % 2) 2 Mes2n/21  (4)

0

£
- x[2] x[1] x[0]
h[15]
h[14]
h[13]
x[2] (x[1] + x[0D) h[12]
x[2] h[11]
h[10]
— x[2] + x[1] x[0] h[9]
- h[8]
h{7]
h[6]
x[2] + x[1] + x[0] h[5]
X[0] h[4]
x[1] h[3]
@ h2)
h[1]
Decimal|  Binary Thermo h[0]
value code code
X, - X
dec x[2:0] Yin [7:0] bi0]
Q 000 00000000
1 001 00000001
2 010 00000011
3 011 00000111
4 100 00001111
5 101 00011111
[} 110 00111111
7 111 ort1111t11

(b) (©)
Fig. 4. Implementation (a) and truth table (b) of a binary-to-thermo
encoder for 3-bit binary codes, and implementation (c) of a one-hot-
to-binary encoder with 16 inputs.

The gate count and latency estimates for the conventional
RRA arbiter depicted in Fig. 1, as functions of the number
of request lines, n, are listed in the last row of Table I.
Similarly, the gate count and latency expressions for the
proposed RRA design are provided in the last row of Table
II. As seen from Tables I and II, the gate counts for the
registers were estimated using a typical number of 7 gates
per bit, while the muxes were assumed to require 3 gates
per bit and 2 levels of logic.

In order to compare the performance of the proposed
RRA design with that of the conventional architecture de-
scribed in [1], the latency expressions in the last rows of
Tables I and II are evaluated in Table III for different val-
ues of n, i.e., 128 256, 512 and 1024. The corresponding
gate-counts are evaluated in Table IV. As seen from Tables
IIT and IV, the proposed RRA architecture is two times
faster, yet requires fewer gates, than the conventional RRA
architecture described in [1].

TABLE IIT
LATENCY COMPARISON OF CONVENTIONAL AND PROPOSED RRA
IMPLEMENTATIONS, FOR DIFFERENT VALUES OF n

| n | 128 [ 256 | 512 [ 1024 ]
Conventional [1] 22 25 28 31

Proposed RRA 11 12 13 14
| Improvement | 50% | 52% | 54% | 55% ]
TABLE IV

GATE COUNT COMPARISON OF CONVENTIONAL AND PROPOSED RRA
IMPLEMENTATIONS FOR DIFFERENT VALUES OF n

| n | 128 [ 256 | 512 | 1024 |
Conventional [1] 3,077 | 6,658 | 14,327 | 30,700
Proposed RRA 2,682 | 5,626 | 11,770 | 24,570

| Improvement || 13% | 16% | 187 | 207% |

4. CONCLUSION

A very efficient BTS architecture suitable for performance-
driven implementation of RRAs, has been introduced in this
paper. The proposed architecture achieves very important
improvements on latency compared to conventional RRA
designs, by employing a unit-weighted representation of the
priority /state vector. It has been shown that the use of
unit-weighted state vectors eliminates the need for a mask
generation block, which is a standard component on conven-
tional RRA devices, converting one-hot or binary-encoded
state signals to a mask/unit-weighted format. Essentially,
the proposed architecture is designed to take advantage of
our observation that the conversion of unit-weighted state
signals to a one-hot grant format is a straightforward oper-
ation, requiring only one level of logic, while a mask gener-
ation module is significantly more complex, with a latency
of log, n levels of logic.

The proposed RRA architecture can also achieve signif-
icant improvements on gate-counts, compared to conven-
tional RRA designs. The gate-count improvements stem
from the elimination of the grant logic sub-module on one
of the two FPEs used on a PPE device. Essentially, in
the proposed RRA design, the FPE blocks use individual
select-logic modules, but share the same grant-logic unit.

A performance analysis of the proposed architecture has
shown that, for typical RRAs, with 128, 256, 512 and 1024
request lines, the new RRA design can achive more than
50% improvement on latency, compared to conventional
RRA designs, yet requires at least 13% fewer gates.
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