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ABSTRACT

One of the key technologies for spoken language 

processing is the automatic synthesis of speech. For an 

important number of current or future applications 

(including various telecommunication services and voice 

interfaces for mobile devices), the synthesis of good 

quality speech starting from unrestricted text as well as 

the efficient implementation of the corresponding 

synthesis systems still represent very difficult tasks. This 

paper presents an optimized implementation of a text-to-

speech synthesis system for the Romanian language using 

a Motorola development platform built around a StarCore 

SC140-based processor. The paper emphasizes the key 

requirements for such an embedded implementation 

(especially the intelligibility/footprint combination), the 

problems that were encountered and the solutions found to 

these problems.1

1. INTRODUCTION 

The last two decades brought significant advances in 

spoken language processing technologies and lots of 

speech-enabled applications became available. The idea 

that low-cost friendly and natural speech interfaces will 

become soon a necessity is today largely accepted [5]. 

One of the key technologies for spoken language 

interfaces development is the automatic synthesis of 

speech. In response to the increasing demand for good 

quality speech output, one may notice that many highly 

intelligible text-to-speech (TTS) systems are now 

available. But most of the commercial TTS systems 

represent completely software solutions and use large 

speech unit databases. This is perfectly acceptable for 

PC/multimedia applications, but not for embedded speech 

applications such as cellular phones or PDAs. The new 

generation of small-scale computing devices has severe 
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resource constraints, since it is not always possible to gain 

access to a central computer or mainframe that could 

manage a “large” TTS system; low CPU resources and 

small memory footprints are mandatory. This is way the 

efficient implementation of a TTS system for this kind of 

application is a difficult task. 

Several companies currently provide embedded TTS 

solutions for their speech interfaces [4]. Some of these 

systems are formant-based, which results in rather poor 

quality speech and are mainly used for cost effective 

devices. 

On the other hand, concatenative systems can 

produce high quality speech, but they generally need large 

speech segment databases; most of these solutions are 

therefore based on client/server (telephony) 

configurations [6]. Reduced size databases (to meet the 

memory constraints) and also simplifications in TTS 

systems’ architecture are usually adopted [3].  

The aim of the paper is to present the main 

implementation issues in developing an embedded version 

of a TTS system for the Romanian language, starting from 

a software (“reference”) one. The reference TTS system 

and the simplifications performed in order to achieve a 

viable hardware implementation are briefly described in 

Section 2. Section 3 presents the embedded 

implementation on a Motorola DSP platform, with 

emphasis on the main attributes of the chosen processor 

and the restrictions imposed by the particular platform, the 

problems that were encountered and the solutions found to 

these problems. Section 4 concludes the paper with 

conclusions and final remarks. 

2. A SIMPLIFIED TTS SYSTEM ARCHITECTURE 

Our collective started a few years ago the project of 

developing a complete TTS synthesis system for the 

Romanian language. A concatenative approach was 

followed, using diphones as the basic acoustic segments 

and a dynamic unit selection procedure. The system 

presently includes a two-level parser for preprocessing 

and syntactic/prosodic analysis, a neural network-based 

letter-to-phone converter, a dynamic unit selection 

procedure (a spectral-distance measure is used to find an 

V - 3170-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



optimal sequence that minimizes acoustic discontinuities

at unit boundaries), and a modified PSOLA algorithm for

diphone concatenation and speech signal generation [1], 

[2], [3]. This software version runs in real-time on a

medium-PC.

But hardware implementing all the above-mentioned

modules leads to a very complex system with prohibitive 

memory and computational requirements. For the

embedded version our main goal was to create a TTS

system capable of generating highly intelligible speech 

while keeping the computational and memory

requirements as low as possible.

The simplifications performed on the reference 

system finally led to the version presented in figure 1. The 

main features of this simplified structure are next briefly

described.

• The preprocessor performs several basic operations

on the input text: the replacement of some non-native

Romanian letters with graphemes corresponding to

their basic phonetic values, input text segmentation,

substitution of upper cases into lower cases, and the 

removal of hyphens and other common punctuation

marks. We mention that the embedded version

presented in this paper does not allow yet special

constructions like abbreviations, acronyms and

numerals.

• The letter-to-phone converter is based on a parallel

neural network architecture, and is practically the

only module unmodified with respect to the complete

software version [1]. Starting from a basic set of 33

phones and an articulatory description of them, we

use a number of 30 fully connected feed-forward

neural networks. Each of them is associated to one 

articulatory characteristic and is capable of

determining whether the phone associated with the

current input grapheme has the corresponding

articulatory features or not, based on a specific binary

codification table. After training, the converter is able

to provide as his output the complete phone string in

the testing phase.

• We carefully designed a minimal acoustic database

consisting of 634 diphones. The segmentation from

the speech corpus (speech files recorded at 8 kHz 

with 16 bit precision) was manually performed.

Finally, diphones were labeled and stored in digital

format.

• Using the phonetic transcription and the diphone

database, the speech generation module (see figure 1)

concatenates the corresponding segmental units in

order to obtain words and sentences. To ensure a

smooth transition between adjacent phones, a

Hamming weightening function is applied on the last

100 samples of the current phone and the first 100 

samples of the next one. 

Signal analysis

Acoustic
database

Input text

Output speech

Text preprocessor

Acoustic segment

concatenation

Letter-to-phone

conversion

Speech generation

Figure 1. The simplified TTS system architecture 

3. THE EMBEDDED IMPLEMENTATION 

OF THE TTS SYSTEM 

3.1. Memory requirements

The main concern when creating an embedded

implementation of a TTS system is related to memory

requirements figures. In our case, the program’s data

(stored as plain constant tables within the program)

comprises two main components:

• the acoustic database;

• the coefficients used by the neural networks that

compose the phonetic converter.

For the acoustic database (see the previous section),

an A-law voice-coding scheme reduced the memory

requirement figure to 692 kB.

The coefficients for the neural networks were initially

stored as simple look-up tables of floating point values

(32 bits for each coefficient), further requiring additional 

194 kB of available memory space.

However, the chosen processor employs a fixed-point

architecture, making the floating-point computations

extremely time consuming. For this reason the original

algorithm was transformed from floating-point to fixed-

point, meaning that all the coefficients were translated 

into their fixed-point equivalents. Tests showed that a 

precision of only 16 bits is sufficient not to alter the

output of the phonetic converter. This operation lowers

the memory requirement figure for the coefficient tables 

to half of its original size (from 194 kB to 97 kB).

Considering the fact that the code-size reaches 107 kB, 

the total memory required for the program to run is 

around 900 kB of memory (including the memory space

for the temporary variables). With a final memory

footprint under the 1MB threshold the application can 

easily face scalability issues. 
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3.2. A brief hardware description 

The hardware platform chosen for this version of our TTS

system is a Motorola MSC8101 ADS development board

built around the MSC8101 processor (based on a StarCore 

SC140 core). This platform incorporates the following

features [8]: 

• 512 kB on-chip memory space; 

• an external SDRAM memory module with a capacity

of 16 MB;

• two RS-232C compatible communication ports (used 

in our application to establish the DSP–PC

communication link);

• a 16-bit audio-codec with a sampling frequency of 8 

kHz (used for real-time play-back of the output 

synthesized speech). 

Our newly developed TTS system also benefits from

the high computational performances offered by the

SC140 DSP core (a highly parallel architecture as 

depicted in figure 2). 

The core’s main architectural features consist in a

data arithmetic logic unit (DALU – which includes four 

ALUs) and an address generation unit (AGU – containing

two ALUs and a bit mask unit – BMU). Other features

like separate buses for the data and program memory

spaces, hardware support for both fractional and integer 

data types and a rich 16-bit wide orthogonal instruction

set, allow the SC140 to perform up to 4 MMACS (million

multiply-accumulate operations per second) for each

megahertz of clock [7].

This considerable computational power helped us 

coping with the most time consuming parts of our 

application as outlined in the next section.

3.3. Application architecture

The application implements a three-level hierarchical 

architecture as shown in figure 3. This type of architecture 

ensures maximum portability since only the functions on

the lowest level are platform dependent.

The bottom level implements the functions that

handle all hardware setup procedures: initialization of the

interrupt mechanism, initialization of the DSP’s internal

timers, setting up the DSP – audio-codec communication

link as well as the communication between the DSP and 

the PC host (via serial interface). 

The middle level handles the communication protocol

routines, ensuring a reliable connection between the host

PC, the DSP and the audio-codec for real-time playback 

of the output speech. The input text is transferred from the

host PC to the DSP using a RS-232C compatible serial

communication interface. The user interacts with the 

system through a standard windows application developed

in Microsoft Visual C++ 6.0. 
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Figure 2. Simplified block diagram of the SC140 DSP core 

(adapted from [7])
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Figure 3. The embedded TTS system architecture 

At the top of this structure stands the actual TTS 

algorithm. As it was described in Section 2, this algorithm

basically comprises the text preprocessor, the phonetic

converter and the speech generation module. The tasks 

performed at this level include:

• text preprocessing and transformation of the input

stream into its corresponding phonetic transcription;

• decompressing  the speech samples extracted from

the acoustic database using the corresponding A-law

decompression scheme;

• applying the Hamming weightening function;

• sending the processed samples to the audio-codec for

playback.

Note that all routines are implemented in high-level C

language in order to ensure easy portability on other

similar platforms.
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3.4. Computational load issues 

Besides the memory requirement problem, another critical 

issue is the one related to the execution speed of our 

application. As mentioned, the main goal was to obtain an 

embedded TTS system capable of delivering in real-time 

highly intelligible output speech.

The profiling tools clearly indicated that the most 

computational intensive routine is the one that handles the 

phonetic conversion of the input text. This routine fills 

more than 80% out of the entire execution time. All 

optimization attempts aimed to speed up this section of 

the program. 

First, all the neural network coefficients were cached 

into the internal memory, thus reducing the stalling time 

related to data access through external memory busses. 

Second, the phonetic converter routine was adapted to 

the specific architecture of the SC140 core, by 

transforming the initial floating-point algorithm into a 

fixed-point equivalent. This transformation implied the 

following steps: 

• transforming the neural network coefficients from the 

32 bit floating-point format into their 16 bit integer 

equivalents. This was done by simply multiplying the 

floating-point value with 1024 and then converting it 

to an integer; 

• replacing the floating-point multiplication operation 

with its 16-bit fixed-point equivalent (consisting of an 

integer multiplication and a 10-bit right shift); 

• the non-linear neuron activation function was 

implemented using a simple look-up table of 97 

integer values. 

The effects of these optimizations were dramatic. The 

coefficient tables now take half of their original size (97 

kB). The classic floating-point multiplication took 336 

cycles to compute, while the modified fixed-point version 

of the same operation requires only 4 cycles. The speed 

gained at this point is significant considering that the 

algorithm performs this operation 96,116 times (for an 

input text of 4-letters long). The initial computation of the 

activation function required no less than 15,241 cycles. 

This function was replaced with a plain indexing 

operation within a vector that takes no more than 16 

cycles.

The overall figures show obvious improvement: the 

cycle count for the floating-point version reaches 2.5e+08 

cycles (or 833 ms) for an input text of 4 letters. In other 

words, for an input text of about 100 characters the 

processing time evolves around 17 seconds. On the other 

hand, the fixed-point implementation only requires 

13,504,736 cycles (about 22.5 ms) for the same input text 

of 4 letters. Thus, the cycle count is reduced 18 times and 

the processing time corresponding to an input stream of 

100 characters long is well under one second. 

4. CONCLUSIONS 

This paper presented the design philosophy and the main 

implementation issues in developing an embedded version 

of a TTS system for the Romanian language, starting from 

a complete software version. Due to the particular 

requirements implied by the use of embedded systems, the 

structure of the reference synthesis system has been first 

reduced to a minimal configuration. Then, this simplified 

system was ported on a Motorola DSP platform. Special 

attention was paid to the amount of available resources 

and the way these resources are managed. 

This embedded version provides practically an 

unlimited vocabulary and is capable of synthesizing 

speech with a very good intelligibility. Therefore, the 

system is perfectly suited for a wide variety of 

applications, ranging from simple prompt generation to 

warning system controls and consumer applications. 

We would like to mention that our collective works 

now on adding other modules from the software version 

to the present embedded implementation of the TTS 

system, taking into account the remaining computational 

and memory resources. 
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