
AN OPTIMIZED TTS SYSTEM IMPLEMENTATION

USING A MOTOROLA STARCORE SC140-BASED PROCESSOR

Dragos Burileanu
*
, Andrei Fecioru

*
, Dragos Ion

*
, Madalin Stoica

**
, and Costel Ilas

**

*
 Faculty of Electronics and Telecommunications, “Politehnica” University of Bucharest, Romania

**
 Motorola Software Center Romania

ABSTRACT

One of the key technologies for spoken language

processing is the automatic synthesis of speech. For an

important number of current or future applications

(including various telecommunication services and voice

interfaces for mobile devices), the synthesis of good

quality speech starting from unrestricted text as well as

the efficient implementation of the corresponding

synthesis systems still represent very difficult tasks. This

paper presents an optimized implementation of a text-to-

speech synthesis system for the Romanian language using

a Motorola development platform built around a StarCore

SC140-based processor. The paper emphasizes the key

requirements for such an embedded implementation

(especially the intelligibility/footprint combination), the

problems that were encountered and the solutions found to

these problems.1

1. INTRODUCTION

The last two decades brought significant advances in

spoken language processing technologies and lots of

speech-enabled applications became available. The idea

that low-cost friendly and natural speech interfaces will

become soon a necessity is today largely accepted [5].

One of the key technologies for spoken language

interfaces development is the automatic synthesis of

speech. In response to the increasing demand for good

quality speech output, one may notice that many highly

intelligible text-to-speech (TTS) systems are now

available. But most of the commercial TTS systems

represent completely software solutions and use large

speech unit databases. This is perfectly acceptable for

PC/multimedia applications, but not for embedded speech

applications such as cellular phones or PDAs. The new

generation of small-scale computing devices has severe

1
 This research was supported by Motorola Software Center

Romania

resource constraints, since it is not always possible to gain

access to a central computer or mainframe that could

manage a “large” TTS system; low CPU resources and

small memory footprints are mandatory. This is way the

efficient implementation of a TTS system for this kind of

application is a difficult task.

Several companies currently provide embedded TTS

solutions for their speech interfaces [4]. Some of these

systems are formant-based, which results in rather poor

quality speech and are mainly used for cost effective

devices.

On the other hand, concatenative systems can

produce high quality speech, but they generally need large

speech segment databases; most of these solutions are

therefore based on client/server (telephony)

configurations [6]. Reduced size databases (to meet the

memory constraints) and also simplifications in TTS

systems’ architecture are usually adopted [3].

The aim of the paper is to present the main

implementation issues in developing an embedded version

of a TTS system for the Romanian language, starting from

a software (“reference”) one. The reference TTS system

and the simplifications performed in order to achieve a

viable hardware implementation are briefly described in

Section 2. Section 3 presents the embedded

implementation on a Motorola DSP platform, with

emphasis on the main attributes of the chosen processor

and the restrictions imposed by the particular platform, the

problems that were encountered and the solutions found to

these problems. Section 4 concludes the paper with

conclusions and final remarks.

2. A SIMPLIFIED TTS SYSTEM ARCHITECTURE

Our collective started a few years ago the project of

developing a complete TTS synthesis system for the

Romanian language. A concatenative approach was

followed, using diphones as the basic acoustic segments

and a dynamic unit selection procedure. The system

presently includes a two-level parser for preprocessing

and syntactic/prosodic analysis, a neural network-based

letter-to-phone converter, a dynamic unit selection

procedure (a spectral-distance measure is used to find an

V - 3170-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

optimal sequence that minimizes acoustic discontinuities

at unit boundaries), and a modified PSOLA algorithm for

diphone concatenation and speech signal generation [1],

[2], [3]. This software version runs in real-time on a

medium-PC.

But hardware implementing all the above-mentioned

modules leads to a very complex system with prohibitive

memory and computational requirements. For the

embedded version our main goal was to create a TTS

system capable of generating highly intelligible speech

while keeping the computational and memory

requirements as low as possible.

The simplifications performed on the reference

system finally led to the version presented in figure 1. The

main features of this simplified structure are next briefly

described.

• The preprocessor performs several basic operations

on the input text: the replacement of some non-native

Romanian letters with graphemes corresponding to

their basic phonetic values, input text segmentation,

substitution of upper cases into lower cases, and the

removal of hyphens and other common punctuation

marks. We mention that the embedded version

presented in this paper does not allow yet special

constructions like abbreviations, acronyms and

numerals.

• The letter-to-phone converter is based on a parallel

neural network architecture, and is practically the

only module unmodified with respect to the complete

software version [1]. Starting from a basic set of 33

phones and an articulatory description of them, we

use a number of 30 fully connected feed-forward

neural networks. Each of them is associated to one

articulatory characteristic and is capable of

determining whether the phone associated with the

current input grapheme has the corresponding

articulatory features or not, based on a specific binary

codification table. After training, the converter is able

to provide as his output the complete phone string in

the testing phase.

• We carefully designed a minimal acoustic database

consisting of 634 diphones. The segmentation from

the speech corpus (speech files recorded at 8 kHz

with 16 bit precision) was manually performed.

Finally, diphones were labeled and stored in digital

format.

• Using the phonetic transcription and the diphone

database, the speech generation module (see figure 1)

concatenates the corresponding segmental units in

order to obtain words and sentences. To ensure a

smooth transition between adjacent phones, a

Hamming weightening function is applied on the last

100 samples of the current phone and the first 100

samples of the next one.

Signal analysis

Acoustic
database

Input text

Output speech

Text preprocessor

Acoustic segment

concatenation

Letter-to-phone

conversion

Speech generation

Figure 1. The simplified TTS system architecture

3. THE EMBEDDED IMPLEMENTATION

OF THE TTS SYSTEM

3.1. Memory requirements

The main concern when creating an embedded

implementation of a TTS system is related to memory

requirements figures. In our case, the program’s data

(stored as plain constant tables within the program)

comprises two main components:

• the acoustic database;

• the coefficients used by the neural networks that

compose the phonetic converter.

For the acoustic database (see the previous section),

an A-law voice-coding scheme reduced the memory

requirement figure to 692 kB.

The coefficients for the neural networks were initially

stored as simple look-up tables of floating point values

(32 bits for each coefficient), further requiring additional

194 kB of available memory space.

However, the chosen processor employs a fixed-point

architecture, making the floating-point computations

extremely time consuming. For this reason the original

algorithm was transformed from floating-point to fixed-

point, meaning that all the coefficients were translated

into their fixed-point equivalents. Tests showed that a

precision of only 16 bits is sufficient not to alter the

output of the phonetic converter. This operation lowers

the memory requirement figure for the coefficient tables

to half of its original size (from 194 kB to 97 kB).

Considering the fact that the code-size reaches 107 kB,

the total memory required for the program to run is

around 900 kB of memory (including the memory space

for the temporary variables). With a final memory

footprint under the 1MB threshold the application can

easily face scalability issues.

V - 318

➡ ➡

3.2. A brief hardware description

The hardware platform chosen for this version of our TTS

system is a Motorola MSC8101 ADS development board

built around the MSC8101 processor (based on a StarCore

SC140 core). This platform incorporates the following

features [8]:

• 512 kB on-chip memory space;

• an external SDRAM memory module with a capacity

of 16 MB;

• two RS-232C compatible communication ports (used

in our application to establish the DSP–PC

communication link);

• a 16-bit audio-codec with a sampling frequency of 8

kHz (used for real-time play-back of the output

synthesized speech).

Our newly developed TTS system also benefits from

the high computational performances offered by the

SC140 DSP core (a highly parallel architecture as

depicted in figure 2).

The core’s main architectural features consist in a

data arithmetic logic unit (DALU – which includes four

ALUs) and an address generation unit (AGU – containing

two ALUs and a bit mask unit – BMU). Other features

like separate buses for the data and program memory

spaces, hardware support for both fractional and integer

data types and a rich 16-bit wide orthogonal instruction

set, allow the SC140 to perform up to 4 MMACS (million

multiply-accumulate operations per second) for each

megahertz of clock [7].

This considerable computational power helped us

coping with the most time consuming parts of our

application as outlined in the next section.

3.3. Application architecture

The application implements a three-level hierarchical

architecture as shown in figure 3. This type of architecture

ensures maximum portability since only the functions on

the lowest level are platform dependent.

The bottom level implements the functions that

handle all hardware setup procedures: initialization of the

interrupt mechanism, initialization of the DSP’s internal

timers, setting up the DSP – audio-codec communication

link as well as the communication between the DSP and

the PC host (via serial interface).

The middle level handles the communication protocol

routines, ensuring a reliable connection between the host

PC, the DSP and the audio-codec for real-time playback

of the output speech. The input text is transferred from the

host PC to the DSP using a RS-232C compatible serial

communication interface. The user interacts with the

system through a standard windows application developed

in Microsoft Visual C++ 6.0.

DALU

Register File

4 ALUs

DALU

2 AAUs

Address Generator

Register File

BMU

A
B

A

A
B

B

AGU

Program

Sequencer

In
stru

ctio
n

 set accelerato
r

128

Instruction Bus

P
D

B

P
A

B

128

64 64

DBA DBB

128 32 3232

PDB / PAB – Program Data/Address Bus
ABA / DBA – Address/ Data Bus (channel A)

ABB / DBB – Address/ Data Bus (channel B)

Figure 2. Simplified block diagram of the SC140 DSP core

(adapted from [7])

ADS hardware setup

(low-level functions and drivers)

DSP-PC
and DSP-User

communication protocols

(SCI and audio-codec
interrupt service routines)

TTS
system

algorithm

Figure 3. The embedded TTS system architecture

At the top of this structure stands the actual TTS

algorithm. As it was described in Section 2, this algorithm

basically comprises the text preprocessor, the phonetic

converter and the speech generation module. The tasks

performed at this level include:

• text preprocessing and transformation of the input

stream into its corresponding phonetic transcription;

• decompressing the speech samples extracted from

the acoustic database using the corresponding A-law

decompression scheme;

• applying the Hamming weightening function;

• sending the processed samples to the audio-codec for

playback.

Note that all routines are implemented in high-level C

language in order to ensure easy portability on other

similar platforms.

V - 319

➡ ➡

3.4. Computational load issues

Besides the memory requirement problem, another critical

issue is the one related to the execution speed of our

application. As mentioned, the main goal was to obtain an

embedded TTS system capable of delivering in real-time

highly intelligible output speech.

The profiling tools clearly indicated that the most

computational intensive routine is the one that handles the

phonetic conversion of the input text. This routine fills

more than 80% out of the entire execution time. All

optimization attempts aimed to speed up this section of

the program.

First, all the neural network coefficients were cached

into the internal memory, thus reducing the stalling time

related to data access through external memory busses.

Second, the phonetic converter routine was adapted to

the specific architecture of the SC140 core, by

transforming the initial floating-point algorithm into a

fixed-point equivalent. This transformation implied the

following steps:

• transforming the neural network coefficients from the

32 bit floating-point format into their 16 bit integer

equivalents. This was done by simply multiplying the

floating-point value with 1024 and then converting it

to an integer;

• replacing the floating-point multiplication operation

with its 16-bit fixed-point equivalent (consisting of an

integer multiplication and a 10-bit right shift);

• the non-linear neuron activation function was

implemented using a simple look-up table of 97

integer values.

The effects of these optimizations were dramatic. The

coefficient tables now take half of their original size (97

kB). The classic floating-point multiplication took 336

cycles to compute, while the modified fixed-point version

of the same operation requires only 4 cycles. The speed

gained at this point is significant considering that the

algorithm performs this operation 96,116 times (for an

input text of 4-letters long). The initial computation of the

activation function required no less than 15,241 cycles.

This function was replaced with a plain indexing

operation within a vector that takes no more than 16

cycles.

The overall figures show obvious improvement: the

cycle count for the floating-point version reaches 2.5e+08

cycles (or 833 ms) for an input text of 4 letters. In other

words, for an input text of about 100 characters the

processing time evolves around 17 seconds. On the other

hand, the fixed-point implementation only requires

13,504,736 cycles (about 22.5 ms) for the same input text

of 4 letters. Thus, the cycle count is reduced 18 times and

the processing time corresponding to an input stream of

100 characters long is well under one second.

4. CONCLUSIONS

This paper presented the design philosophy and the main

implementation issues in developing an embedded version

of a TTS system for the Romanian language, starting from

a complete software version. Due to the particular

requirements implied by the use of embedded systems, the

structure of the reference synthesis system has been first

reduced to a minimal configuration. Then, this simplified

system was ported on a Motorola DSP platform. Special

attention was paid to the amount of available resources

and the way these resources are managed.

This embedded version provides practically an

unlimited vocabulary and is capable of synthesizing

speech with a very good intelligibility. Therefore, the

system is perfectly suited for a wide variety of

applications, ranging from simple prompt generation to

warning system controls and consumer applications.

We would like to mention that our collective works

now on adding other modules from the software version

to the present embedded implementation of the TTS

system, taking into account the remaining computational

and memory resources.

5. REFERENCES

[1] D. Burileanu, M. Sima, and A. Neagu, “A Phonetic

Converter for Speech Synthesis in Romanian”, Proc. of the

XIVth International Congress on Phonetic Sciences ICPhS’99,

San Francisco, USA, vol. 1, pp. 503-506, 1999.

[2] D. Burileanu, “Basic Research and Implementation

Decisions for a Text-to-Speech Synthesis System in Romanian”,

International Journal of Speech Technology, vol. 5, no. 3,

Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.

211-225, 2002.

[3] D. Burileanu, A. Fecioru, and D. Ion, “On Automatic

Speech Synthesis for Spoken Language Interfaces”, Speech

Technology and Human-Computer Dialogue, Publishing House

of the Romanian Academy, Bucharest, Romania, pp. 127-138,

2003.

[4] L. Comerford et al., “The IBM Personal Speech Assistant”,

Proc. of the IEEE ICASSP2001, vol. 1, 2001.

[5] L. Deng et al., “Distributed Speech Processing in MiPad’s

Multimodal User Interface”, IEEE Trans. on Speech and Audio

Processing, vol. 19, no. 8, pp. 605-619, 2002.

[6] A. Monaghan et al., “Multilingual TTS for Computer

Telephony: The Aculab Approach”, Proc. of Eurospeech’2001,

Aalborg, Denmark, vol. 1, pp. 513-516, 2001.

[7] Motorola SC140 DSP: Reference Manual, Rev. 3, 11/2001.

[8] Motorola MSC8101: Reference Manual, Rev. 2, 05/2002.

V - 320

➡ ➠

