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ABSTRACT

This paper is focused on cellular phone embedded speech recog-
nition. We present several methods able to fit speech recognition
system requirements to cellular phone resource. The proposed
techniques are evaluated on a digit recognition task using both
French and English corpora. We investigate particularly three as-
pects of speech processing: acoustic parameterization, recognition
algorithms and acoustic modeling.

Several parameterization algorithms (LPCC, MFCC and PLP)
are compared to the Linear Predictive Coding (LPC) included in
the GSM norm. The MFCC and PLP parameterization algorithms
perform significantly better than the other ones. Moreover, feature
vector size can be reduced until 6 PLP coefficients allowing to
decrease memory and computation resources without a significant
loss of performance.

In order to achieve good performance with reasonable resource
needs, we develop several methods to embed classical HMM-based
speech recognition system in cellular phone. We first propose an
automatic on-line building of phonetic lexicon which allows a min-
imal but unlimited lexicon. Then we reduce the HMM model com-
plexity by decreasing the number of (Gaussian) components per
state.

Finally, we evaluate our propositions by comparing Dynamic
Time Warping (DTW) with our HMM system - in the context of
cellular phone - for clean conditions. The experiments show that
our HMM system outperforms DTW for speaker independent task
and allows more practical applications for the cellular-phone user
interface.

1. INTRODUCTION

Automatic speech recognition systems obtain good results in labo-
ratory conditions, but they still require large memory and CPU re-
sources. State of the art speech-to-text systems are usually based
on acoustic models composed of several millions of parameters.
They also use large lexicon and language models. Moreover, de-
coding a sentence requires huge amount of computational power
(more than 10 times real time on a standard workstation). Em-
bedded speech recognition system on a cellular phone implies to
reduce significantly both decoding complexity and model size.

In this paper, we study various techniques for mapping speech
recognition system requirements to the limited amount of resource
available in a cellular phone.

In GSM standard, the voice coding is based on LPC (Linear
Predictive Coding [1]). Using directly this LPC voice coder for
speech recognition saves computational costs. We compare this

LPC parameterization with classical parameterization algorithms
proposed in the literature: Mel Frequency Cepstral Coefficients
(MFCC [2]) and Perceptual Linear Predictive coefficients (PLP
[3]). At last, we evaluate the influence of acoustic vector size on
speech recognition system performance, in a realistic context for
cellular phone (isolated words, small vocabulary).

Secondly, we compare Dynamic Time Warping [4] (DTW)
and Hidden Markov Model [5] (HMM) approaches.

Finally, we study a potential solution to reduce the HMM com-
plexity, based on a decrease of HMM parameters. In this way, we
evaluate the influence of the number of Gaussians per state on the
Word Error Rate (WER).

2. CELLULAR PHONE CONTEXT

If the first generation mobile-phones provide only few user ser-
vices like the recording of some phone numbers, the new gen-
erations offer a large set of functionalities. It includes powerful
agenda, ring downloads, games, ..., leading to a complex phone-
user interface. Due to the size of the cellphones, voice based
applications like name dialing, automatic phone number recogni-
tion (and dialing) or vocal control will become the basic ones for
the customer. If the last generation cellular phones provide more
memory and computational resources (and power, which is linked
to the previous ones), their resources are still limited compared to
the needs of speech recognition engines. The cellphone embedded
chip provides :

• few kB of memory (less 4 kB of ROM for our chip),

• a processor around 50 MHz, and

• a Digital Signal Processor (DSP) around 50 MHz.

Due to the application context, cellular phone speech recog-
nition engines have mainly to deal with new names and/or family
name. This adds a constraint to the lexicon; it is compulsory to
extend or modify the lexicon depending on the user requests (dy-
namic lexicon). It also implies a phoneme-based recognition and
not a global-word based recognition engine.

Finally, the ergonomic point of view leads to short training
phase. Generally, the user is asked to pronounce only one repeti-
tion for each word of the lexicon.

3. DATABASES AND EXPERIMENTAL PROTOCOLS

Experiments are conducted on an isolated digit recognition task. In
order to deal with the ergonomic constraint shown in 2, we selected
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a speaker dependent mode where the models are trained with only
one repetition of the different digits. We use two corpora:

• the first one is the isolated digit subset of the French corpus
BDSONS [6]. We first defined an experimental set com-
posed of 800 digit utterances pronounced by 16 speakers
(5 repetitions of the ten digits by speaker). We used 1400
digits from the 14 remaining speakers (10 repetitions of the
ten digits by speaker) for speaker independent HMM adap-
tation (section 5).

• the second is the English corpus TI DIGITS [7]. It includes
225 speakers divided into two subsets: training (112 speak-
ers) and testing (113 speakers). For each speaker, two utter-
ances of eleven digits (one to nine plus ”oh” and ”zero”) are
available. The test subset, respectively the train subset, is
composed of 2464 digit utterances, respectively 2486 digit
utterances.

The digit z (0-9 for BDSONS or 0a, 0b, 1-9 for TI DIGITS) of
utterance y (0-4 for BDSONS or 0-1 for TI DIGITS) pronounced
by the speaker x will be noted LxUyDz . A reference for a given
digit is built using only one repetition. We define 3 different ex-
perimental protocols:

• ”user” protocol: only the test utterances pronounced by the
training speaker are used. This protocol corresponds to the
classical operating mode of the cellphone (only the owner
uses his phone). For BDSONS database, we simulate 80
different speakers by learning a reference on one among
the five repetitions, by using the other repetitions (from the
same speaker) for the tests and by repeating this process five
times. This protocol leads to 3200 tests. To summarize,
the learning uses LxUy1D0−9 files when the testing cor-
responds to LxUy2D0−9 with y2 different from y1. This
protocol is not used for TI DIGITS corpus.

• ”other” protocol: only the test utterances pronounced by
the other speakers (different than the training one) are used.
This protocol simulates the situation where the user is not
the cellphone owner. For BDSONS, we simulate 80 speak-
ers as described bellow but we use all the utterances except
the training one for testing. This protocol leads to 60000
digit tests (80 pseudo-speakers * 15 other speakers * 5 ut-
terances * 10 digits). For TI DIGITS, we obtain 224 virtual
speakers (for 112 real speakers in the database training set
and two repetitions by speaker). It leads to 556864 digit
recognition tests using the 2486 digits corresponding to the
testing set.

• ”all” protocol: all the utterances different from the training
one are used for testing. It leads to 63200 tests for BD-
SONS. This protocol is not used for TI DIGITS (in this
database training and testing utterances come from differ-
ent speakers).

4. PARAMETERIZATION

In numeric land-line telephony, the PCM speech coding requires
56/64 Kbits/s transmission rate (8KHz x 7/8 bits). As this rate is
expensive, a special codec is used for cellular phone: the Linear
Predictive Coding (LPC) with a rate between 13Kbits/s for full-
rate and 6.5Kbits/s for half-rate. Using directly the coefficients
issued by this codec for speech recognition allows to save compu-
tational costs in the phone (and ROM memory).

In order to evaluate this solution, we compare LPC coefficients
with two classical speech recognition parameterizations, MFCC
and PLP, in the specific context of cellular phone embedded appli-
cations. We perform decoding with feature vectors composed of
12 static coefficients augmented by the energy (without delta and
acceleration coefficients) issued from LPC, LPCC (Linear Predic-
tive Cepstrum Coefficients), MFCC or PLP parameterization algo-
rithms. For the PLP, we investigate also shorter dimension feature
vectors (PLP with only 6 coefficients, called PLP6).

For LPCC computation, we first estimate LPC coefficients with
the classical algorithm and then we apply a simple recursion (cf.
equation 1). In this case, the additional computational cost is lim-
ited.

Eq.1 : LPCCi = −LPCi +
1

i

i−1∑

k=1

(i − k)LPCkLPCCi−1

where LPCi (respectively LPCk) is the ith coefficient (respec-
tively kth coefficient) issued from linear prediction codec and where
LPCCi−1 represents the (i−1)th cepstral coefficient issued from
LPC coefficients.

All the experiments are conducted using a DTW-based system
with and without applying Mean Subtraction and variance Reduc-
tion (MSR - each coefficient mean is set to 0 and each variance is
set to 1).

4.1. Results

The results (cf. Table 1) show that LPCC (LPC cepstral coeffi-
cients) are more efficient than the cellular phone embedded LPC.
The WER decreases from 11% to 4.8% for ”user” BDSONS pro-
tocol without MSR and from 53% to 35% for ”all” BDSONS pro-
tocol without MSR. The gain is similar for the TI protocol and for
experiments with feature normalization (with MSR).

The filter-bank based parameterizations (MFCC and PLP) out-
perform drastically the LPC based parameterization. The WER
(for MFCC and PLP) is always less than 0.3% for ”user” protocol
compared with the 11% or 4.8% obtained with LPC based param-
eterizations. Nevertheless, these methods require more CPU re-
source. The feature normalization (mean subtraction and variance
reduction) improves significantly the recognition performance for
”all” and ”other” protocols, especially using MFCC parameters
(from 41% to 27% of WER for TI DIGIT corpus and from 36%
to 15,6% for BDSONS corpus). Nevertheless, we also observe a
slight recognition rate degradation using ”user” protocol.

The last interesting point to note is the small loss (around
0.60% of absolute WER for ”user” protocol) observed using com-
pact feature vectors (PLP6, composed of the first 5 PLP coeffi-
cients associated with the energy) compared to the best parameter-
ization.

5. REDUCING HMM RESOURCE NEEDS

In the literature, the two main algorithms used for isolated digit
recognition are DTW and HMM. If DTW is well-known for its
good performance/resource ratio, it is not able to perform com-
plex tasks, based for example on continuous speech recognition.
HMM systems are well known for their performance, especially
for continuous speech recognition. Unfortunately, HMM systems
use generally very large acoustic models composed of several thou-
sands of parameters.
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BD TI
”user” ”all” ”other”

LPC 11.00% 53.84% 65.81%
LPC MSR 14.56% 58.90% 67.51%
LPCC 4.88% 35.29% 42.54%
LPCC MSR 5.19% 25.27% 34.35%
MFCC 0.19% 36.03% 41.66%
MFCC MSR 0.31% 15.60% 27.24%
PLP 0.12% 26.08% 36.29%
PLP MSR 0.28% 23.09% 29.34%
PLP6 0.69% 23.29% 28.09%
PLP6 MSR 0.91% 17.40% 24.83%

Table 1. WORD ERROR RATE OF DTW BASED RECOGNIZER USING

SEVERAL ACOUSTIC FEATURES: lpc, lpc with Mean Subtraction and vari-
ance Reduction (lpc MSR), lpcc, lpcc MSR, mfcc, mfcc MSR, plp, plp
MSR, compact plp (plp6) and compact plp with MSR (plp6 MSR)

Before comparing HMM and DTW systems in the focus of
cellular phone embedded application, we propose two solutions to
improve HMM technique.

5.1. Experimental conditions

In order to evaluate the performance of the HMM system with the
dynamic lexicon (memory resource reduction) and model-size re-
duction (computation resource reduction and memory save), de-
scribed in section 5.2.1 and 5.2.2 respectively, we use the protocols
defined in section (3) and BDSONS corpus. The signal is param-
eterized on 12 MFCC coefficients and energy for each frame (20
ms) and MSR normalization (mean subtraction and variance re-
duction) is applied. The decoding strategy is based on a classical
Viterbi algorithm.

The HMM system uses classical left-right context independent
phoneme models, composed of 3 emitting states.

The context-independent phoneme models are learned using a
three step method:

• Firstly, the models are learned using the French database
BREF120 ([8]). This database includes about 40 hours of
speech, pronounced by 120 speakers. This training phase
is done using EM algorithm and optimizing a Maximum
Likelihood (ML) criterion;

• after this first step, the models are adapted to the corpus
and the task (BDSONS and digit recognition) using the
set of 1400 digits defined in 31. This adaptation is based
on MAP (Maximization a posteriori [9]). It gives speaker-
independent models.

• lastly, we perform a second model adaptation (still using
MAP) in order to obtain speaker-dependent models. This
second adaptation phase is achieved using only one training
repetition (the ten digits).

5.2. HMM: memory and computational reduction

To embed a HMM speech recognition engine in a mobile phone
leads to a drastic reduction in terms of memory and computation
resource consumption. To deal with this problem, we propose in
this paper two techniques:

1speaker involved during this adaptation phase will not be present in
sets used for speaker dependent model training nor for testing

• In order to fit cellular phone memory requirements without
limiting the potential applications, we propose a dynamic
building of lexicon. A dynamic lexicon allows the user to
use specific words, like family names (which is compulsory,
for example, in name dialing application), without leading
to a huge lexicon. Here, the dynamic lexicon is automati-
cally built thanks to an acoustic decoding pass, which pro-
duces the phonetic transcription of each new word.

• Due mainly to the embedded processor limits, we reduce
the model complexity. We study the correlation of the num-
ber of Gaussians per state and the WER (from 128 to 1
Gaussian per state).

5.2.1. Dynamic lexicon results

Table 2 presents the results obtained using our dynamic lexicon.
The performance, in terms of WER, is compared to a classical
static lexicon and is given for the three protocols (”user”, ”other”
and ”all”). Static and dynamic lexicons achieve very similar per-
formance. Nevertheless, the dynamic lexicon leads to a significa-
tive gain in terms of memory and functionalities. A different ap-
plication, like name dialing, will certainly highlight the interest of
the dynamic lexicon compared to a digit recognition task (which
relies on a small lexical complexity).

user other all
Static lexicon 1.38% 5.38% 5.18%
Dynamic lexicon 1.88% 6.71% 6.46%

Table 2. WORD ERROR RATE ON BDSONS DATABASE USING STATIC

AND DYNAMIC LEXICON: 16 components by mixture. 3200 tests for
”user”, 60000 for ”other” and 63200 for ”all”

5.2.2. Model size reduction results

In order to evaluate the influence of HMM model size on WER,
we test 5 configurations from 128 to 1 Gaussian per state. The
results (cf. Table 3) show, as expected, that reducing the number
of components in the model increases the WER. Nevertheless, a
small loss (less than 0.2% of WER) occurs when using the higher
order models compared to middle size ones. It comes from the
small amount of adaptation data available for the two adaptation
steps (1400 digits for the first one and only one repetition of the
ten digits for the speaker adaptation).

HMM models with 16 components by state obtain the more
interesting performance/resource ratio for the targeted application.

user other all Model size
128g/state 1.88% 5.88% 5.68% 360 kB
64g/state 1.66% 6.84% 6.58% 180kB
16g/state 1.88% 6.71% 6.46% 45kB
4g/state 12.41% 35.60% 34.43% 11kB
1g/state 21.09% 74.56% 71.85% 3kB

Table 3. HMM SYSTEM WER WITH DIFFERENT NUMBERS OF COM-
PONENTS BY MIXTURE/STATE:. All tests are performed with a dynamic
lexicon.
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5.3. DTW vs. HMM

For ”user” protocol, DTW obtains around 0.31% of WER (cf. Ta-
ble 1) using MFCC MSR parameterization when HMM gets be-
tween 1.66% to 21.09%, depending on the model size ( cf. Table
3).

For ”all” protocol, HMM outperforms DTW with a WER around
5%, to compare with around 15% of WER for DTW.

Looking at the amount of computational time needed (cf. Ta-
ble 4), both approaches seem relatively close when model size re-
duction is used. HMM with less than 16 components by mixture
need less than 0.4 times the real time for the decoding and DTW
around 0.31 times.

HMM sys. DTW
1g 4g 16g 64g 128g sys.

time (s.) 0.30 0.31 0.40 0.79 1.33 0.31

Table 4. COMPUTING TIME NEEDED FOR DECODING 1 SECOND OF

SIGNAL: results given for DTW and HMM with 1 to 128 Gaussians per
state

6. CONCLUSION

In this paper, we focused on embedding a speech recognition ap-
plication in a mobile phone. In this context, the speech recognition
engine must respect some constraints in terms of computational
and memory costs.

We showed that LPC cepstral coefficients (LPCC) issued from
the cellular phone embedded LPC codec allow a good performan-
ce/cost ratio. Nevertheless, filter-bank based parameterizations
(MFCC and PLP) outperform significantly both LPC and LPCC
parameterizations. We proposed a dynamic lexicon which allows
smaller but unlimited lexicon without a significant loss in terms of
WER. Then, we showed that reducing the number of components
by state until 16 Gaussians maintains a good perfomance level and
allows to save significantly memory and computational costs.

Finally, we presented a very compact HMM system which
used around 45kB of memory and no more computational resource
than DTW approach. This HMM system obtained a satisfactory
level of performance and authorizes a large set of applications, in
the context of ergonomic cellular-phone vocal interfaces.
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