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ABSTRACT 

This is a small vocabulary, speaker independent, discrete word 

speech recognition system based on the System On Chip (SOC) 

philosophy. It is implemented on an 8-bit MCU (Micro Control 

Unit). The system adopts Linear Predictive Cepstral Coefficient 

(LPCC) related features followed by Vector Quantization (VQ) 

step as front end, and Hidden Marcov Model (HMM) as speech 

model. Confidence measure based on likelihood score (LLS) are 

given for rejection of Out-Of-Vacabulary (OOV) words. The 

recognition rate is improved with corrective training, and 

robustness is acquired by integrating confidence measure into 

the system. The recognition accuracy is nearly 97% with a 

vocabulary up to 30 phrases under normal conditions. Simple 

speech codec is also implemented for all speech I/O purpose. 

1. INTRODUCTION 

The embedded speech recognition system is becoming more 

important in the recent years with the rapid development of the 

handheld devices and other portable devices. Handheld devices 

are extremely limited by cost, power and size. And it needs more 

smart user interface other than keyboard. In the field of 

consumer electronics such as toy industry which only requires 

simple speech commands, small-vocabulary speaker-dependent 

name dialing and speaker-independent command control are 

very useful. And implementions based on Dynamic Time 

Warping (DTW) and Continuous HMM (CHMM) have been 

successfully employed in mobile phones, personal digital 

assistants and toys. But currently most of these implementations 

are on DSP platform, which is very expensive, especially for 

cost sensitive toys. For example, QualComm has developed 

PureVoice speech recognition engine for a mixed 100 word 

speaker-dependent and 30 word speaker independent task in one 

system within the CDMA chipset. [1] Using Artificial Neural 

Network (ANN) schema, Sensory Inc. achieves an recognition 

rate of above 95% for speaker independent tasks with up to 15 

words using 8-bit MCU. [2] Formally we also proposed a 

speaker dependent system based on an 8051 core in [3]. 

In this paper, we use a different Discrete HMM (DHMM) 

approach for the small vocabulary, speaker independent, discrete 

word task on 8-bit MCU core. The subtle balance of cost and 

performance is achieved by choosing the 8-bit microcontroller 

with 16-bit co-processor platform, and by carefully adjust the 

training and recognizing algorithms we use, and by using some 

heuristic methods. We choose DHMM because it requires very 

few hardware resources. The hardware architecture makes 

flexible vocabulary and low power consumption possible. To 

achieve a user friendly all speech interface, speech codec of 

Continuous Variable Slope Delta modulation (CVSD) is used. 

The bit rate is 16kbits/s.  

The database we used is recorded under normal room 

conditions. 90 isolated Mandarin words are spoken 5 times by 

100 persons, among whom 50 are male and 50 female. The 

speech utterances of 40 men and 40 women are randomly 

selected for training, the left for testing. 

The rest of this paper is organized as follows. In section 2, 

we describe the hardware architecture of the speech recognition 

SOC. In section 3, the software architecture and the algorithmic 

details are introduced and relevant results are presented. The 

overall evaluation is given in section 4 and the system 

performance is summarized in section 5. 

2. HARDWARE ARCHITECTURE

The chip we choose is S3CB519 [4], which is composed of an 8-

bit MCU core with 3K bytes on-chip RAM and 16K words on-

chip ROM, 16-bit co-processor, a codec of 14bit ADC and 8 bit 

DAC, PWM (Pulse Wide Modulation), 6 general purpose I/O 

ports and other peripheral circuits. The maximum system clock 

frequency is 8.2MHz. The block diagram is shown in Figure 1 

and details of each block are described below. 

Fig. 1 Hardware block diagram  

The MCU core is an 8-bit low power, Harvard style, RISC 

microcontroller which provides 3-stage pipeline. It can 

manipulate operands in two address spaces: 3K-byte data RAM 

and 16K-word code ROM respectively. The RAM is further 

divided into 2048 X-memory and 1024 Y-memory for 16-bit co-
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processor operations. The data of DHMM models and vector-

quantized code book are saved in external flash memory and 

loaded to RAM whenever needed. The compressed voice 

prompts are stored in the flash or masked into data ROM. The 

ADC is Sigma-Delta type 256X over sample ADC with 14-bit 

resolution. The DAC provides a voice output channel with 8-bit 

resolution. As in figure 1, there are six 8-bit I/O ports and one 

serial port. An LCD controller controls LED lights. Timers, 

Battery Level Detection and Watch Dog Timer are also included. 

The input signal is pre-amplified and filtered by a 

300~3400Hz band-pass filter before sampled by ADC with 8 

KHz sampling frequency. Then digital speech signal is analyzed 

and recognition carried out. Proper prompts is decoded and 

played after that. Also other outputs such as LCD are available. 

3. SOFTWARE ARCHITECTURE

To handle the multi-task problem, a foreground / background 

software system with interrupts is designed. Apart from Reset 

and NMI, there are two interrupt vectors, each one have 8 

interrupt sources. There are two 128-byte buffers preserved in 

RAM to alternately store the accumulated ADC data. Every 

0.125 ms, data is sampled by ADC and saved to one buffer. 

After 8 ms, the full buffer is processed by the feature extraction 

function and the other buffer continues to store the ADC result. 

Thus two buffers are used in the alternation. Background tasks, 

such as calculating LPCC features and vector-quantizing each 

frame, are carried out when system is not engaged in sampling 

and accumulating autocorrelation values for the foreground tasks. 

The 16-level hardware stack, which is provided by the 

system, is not enough for the task, so software stack is created 

and maintained by the program. 

3.1 System Overview  

Fig.2 Software system overview 

Speech features of LPCC and related features are used in the 

system. DHMM is employed to describe words that are to be 

recognized. There are two phases to run the system, one is the 

training phase which is performed on a PC to get the VQ code 

book and the DHMM models; the other is the recognizing phase 

which is carried out on chip by using the well trained models 

written on flash. 

During the training phase, all the training utterances are 

processed by the front end to get frame based LPCC features, 

and then the VQ code book is trained by using these features 

with k-mean clustering. Parameters of DHMM are trained by 

using the vector quantized features with Baum-Welch algorithm.  

During the recognition phase, the microphone accepts the 

speech, and features are extracted and vector-quantized. Then 

the vector-quantized frame sequence is matched with each word 

model with Viterbi decoding algorithm. The output likelihood 

scores are post-processed by the classifying neural network and 

a label is given to indicate to reject or to accept the utterance. 

This process completes the recognizing phase. 

The advantage of this structure is that different vocabulary 

can be retrained easily and algorithms such as corrective training 

are transparent to the on-chip model format. With the 

changeable flash on chip, different vocabulary can be easily 

reconfigured for new recognition applications. 

3.2 Front End Feature Extraction and Feature Selection 

This speech recognition system chip uses LPCC, its first 

order delta component ( LPCC) , energy (E), its first and 

second order delta component ( E and E) as input features. 

Though Mel-Frequency Cepstral Coefficient (MFCC) is more 

powerful and robust to noisy conditions, it is computational 

formidable. After these features are combined and weighted 

heuristically, they are vector-quantized to further reduce 

recognition complexity. 

Endpoint detection algorithm is used to separate the 

utterances from environmental sound and burst noises. A very 

simple endpoint detection algorithm based on Zero-Crossing 

Rate (ZCR) and frame energy is adopted for computational 

requirements.  

Cepstral Mean Subtraction (CMS) has been proved to be an 

effective method to eliminate the channel characteristic from the 

cepstral coefficients and to improve recognition robustness for 

the mismatch between training and recognizing environments. 

But the traditional exponential window CMS routine requires 

more than 2-second voice to get a stable cepstral mean 

estimation [5]. But isolated Mandarin words seldom last over 1.5 

second. To get a robust cepstral mean value estimate for 1.5 

second speech, we initialize the cepstral mean with average of 

the first few voicing frames, and then update it frame by frame 

with a decay coefficient  to make it converge faster. can be 

chosen by 

)/(2ln
S

FT
   ( 1 ) 

Where T is the time voice lasts, Fs is the frame sampling 

frequency, not the 8 KHz sampling frequency. 

3.3 Vector Quantization 

Due to computation cost and limited RAM resource, the input 

feature sequences are quantized by a vector quantization (VQ). 

Each VQ number is assigned with an output probability in each 

state of each word model, so the output probability computation 

is simplified for our very limited memory resource. Though this 

quantization step changes one-step optimization to two-step 

optimization, yet it is acceptable. This step consumes most of the 

in the recognition process because VQ index for each frame can 

be obtained only after every code book item is searched. This is 

essentially a brute force search. So proper code book size is a 

key factor for system responding time.  

The Self Organizing Map (SOM) is a competing neural 

network with two consecutive steps of global learning and local 

learning. [6] So we tried the Euclidian distance, two dimensional 

grid SOM as our VQ code book structure. The SOM-based VQ 

method can achieve better performance by reducing the 

quantization error while keeping the original feature geometry. 
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And the code book size is half of that of k-mean clustering. The 

SOM-based VQ implementation can be carried out in real time. 

The features are represented by 16-bit fixed point digit on 

chip. From our observation, we know that most of the features 

falls to half of the digit range. So after cepstral weighting, the 

features are scaled and round-off heuristically to make use of the 

full range of the fixed point feature representation so as to 

further scatter code book and improve recognition rate. 

Table 1. VQ recognition rate table 

Test Set Code Book size RecogRate (%)

No VQ / 98.9 

VQ by k-mean 256 94.5 

VQ by SOM 128 94.1 

VQ + Round Off 256 95.1 

As Table 1 shows, VQ degrades the recognition rate 

significantly; SOM can reduce VQ code book size while keeping 

comparable recognition rate; and recognition rate is further 

improved by scaling and rounding-off features before VQ. So 

we choose VQ with rounding-off as the final approach. 

3.4 Discrete Hidden Marcov Model 

Simple DHMM for whole word is chosen in our approach due to 

complexity requirements. [7] provides an overview on HMM. In 

our approach, each model contains several states which can only 

jump forward no more than one state. For two-syllable Mandarin 

word, 9 states are chosen heuristically by experiments. In 

training phase, state transition matrix is trained. In recognition 

phase, Viterbi search gives each model a logarithm likelihood 

score (LLS) and the model with maximum LLS is recognized as 

the correct result. A one-state jumpable silence model is added 

at both the start and end of the word model to absorb the non-

voicing frames. This silence model is trained with non-voicing 

frame features. 

As Table 2 shows, when hand labeled endpoint is used, 

DHMM with silence model (DWS) is as good as DHMM 

without silence model (DNS); when no endpoint detection 

algorithm is used, DWS significantly outperforms DNS; when 

simple endpoint detection algorithm is added, recognition rate 

remains the same. So the silence model, along with the simple 

ZCR and energy based endpoint detection algorithm, is selected 

to save both time and power consumption. 

Table 2. Recognition rate table with silence model 

RecogRate

(%) 

Hand labeled 

endpoint

No  

endpoint 

Simple

endpoint

DWS 95.1 94.9 95.0 

DNS 95.1 92.4 92.9 

3.5 Corrective Training 

DHMM discussed above does not consider the inter-model 

interference and trains each word model separately. So if 

confusable words are in the same vocabulary, errors are prone to 

occur. To overcome this problem, corrective training introduced 

in [8] is adopted. This algorithm uses a confusable table to 

indicate the confusable words and re-estimated the confusable 

word’s state probabilities through utilizing differences between 

LLS of the corresponding utterances. This procedure is iterated 

several times until it converges. 

In our implementation, two modifications are made as 

follows. Firstly, the states can not be exactly aligned across 

models since sub-word model is not used. So we only adjust the 

true word’s all state probability by using logarithmical 

likelihood ratio (LLR), which is is same for each state and 

defined as 

212,1
LLSLLSLLR       (2) 

Secondly, the confusable table is dynamically regenerated 

according to the confusion matrix of all the words after the 

iteration. This helps to adjust only the most confusable word in 

the iteration and thus improves recognition rate. Table 3 shows 

the recognition improvement. 

Table 3. Corrective training recognition rate table 

Corrective training method 

(iteration num) 

RecogRate 

(%) 

No Corrective training 95.1 

Corrective training (1) 95.7 

Dynamic confusable table(1) 95.9 

Corrective training (5) 96.6 

Dynamic confusable table(5) 97.4 

Minimal Classification Error (MCE) criterion is also widely 

used to replace the Maximum Likelihood (ML) criterion [9]. 

Because of its continuous derivable form, MCE is more proper 

for CHMM and SCHMM (Semi-Continuous HMM). And we 

adopt the simple corrective training method for DHMM. 

3.6 Confidence measure with LVQ Classifier 

For our system, a simple confidence measure based on LLS is 

useful. Similar to [10], we extract a set of statistical features 

from the recognizing LLS and then use LVQ3 algorithm to train 

a classifier for INV (In Vocabulary) and OOV words.  

Because busty noise and long utterance can be rejected by the 

endpoint detection algorithm, we take only 30 INV words and 

30 OOV words of similar length, each of 500 utterance in the 

data set, and recognize them to obtain LLS for each model and 

label these utterances with ‘INV’ and ‘OOV’ respectively. LLS 

of each utterance are sorted in descending order as Si, i = 1, …, 

N, for the feature extraction phase. 

The features we used include: 

111
/ mSX   (3) 

122
/ SSX   (4) 

1
1,1

13
/|)(| SSESX

SkSk
k

 (5) 

1min4
/ SSX   (6) 

in which m stands for mean LLS of this model, E stands for 

Expectation of LLS,  is the constant which is set by the user 

and ranging from 0.5 to 0.9, and Smin stands for the minimal LLS 

of an utterance. X1, X2 and X3 are used in [10]. X2 is a good 

indicator when there are similar words in the vocabulary. X4 is 

good when OOV word is very dissimilar to INV word. Under 

this circumstance, both S1 and S2 can not exactly model the 

utterance. So X4 provides an alternative here. A problem with X3
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is that it can only be determined after  is heuristically set, but 

the performance is unstable with different . Then LVQ3 can 

draw the segmental linear classifier, in which 16 neurons are 

used. The detailed algorithm can be found in [6]. Also speech 

utterances of 80 persons are used for training, and the left of 20 

persons for testing. When X1 & X2 & X4 are used, we have 

obtained a result of 8.3% Rejection Rate and 4.5% False alarm 

Rate, which is not bad for many applications. 

4. EVALUATION EXPERIMENTS 

The system uses 23 dimensional LPCC and energy related 

features as input, and the code book with 128 vectors is used to 

quantize the features, then DHMM are trained to model the 

words that are to be recognized. The output likelihood scores are 

post-processed to provide a confidence measure to reject OOV 

words.

We sum up here the overall recognition rate boost during the 

steps in recognition error rate reduction. The final rates are all 

obtained in real environments, using on chip recognition directly. 

Table 4. Overall recognition rate boost table

System 

description 

RecogRate 

(%)

Base line 89.2 

Cepstral Mean Subtraction 93.7 

Vector Quantization 94.7 

Silence model 95.4 

Corrective training 96.7 

Although the system recognition rate seems to drop at the 

Cepstral Mean Subtraction and Silence model step, it 

outperforms the base line system in the real environment test. Of 

course, the Corrective training step steadily boosts the system 

performance. And the Vector Quantization step is crucial for the 

real-time system implementation, though it will significantly 

increase the error rate. 

Table 5. Different vocabulary recognition rate table 

Vocabulary size RecogRate (%) 
RecogTime 

(real-time) 

10 98.9 0.53 

30 96.7 0.60 

60 92.1 0.71 

Different vocabulary tests in real environment are also 

conducted and shown in Table 5. The recognition time does not 

change much because VQ is the part that consumes most of the 

time. We can see that the this speech recognition chip can not 

deal with larger vocabulary. One probably explanation to this is 

that 7-bit VQ code book may become too imprecise for the 

HMM observation probability distribution, when compared with 

the original CHMM. 

5. CONCLUSION 

This discrete word, speaker independent, small vocabulary 

speech recognition system is designed for and implemented on 

an 8-bit MCU core. The system adopts LPCC and related 

features followed by a VQ Step as front end, and then the speech 

input is recognized with DHMM by using Viterbi decoding 

algorithm. The output LLS is  further post-processed using LVQ 

to indicate whether the word is in the vocabulary or not. 

Experiments have shown that this system is designed with 

compromising goals of usability, flexibility, accuracy, speed and 

robustness. Also CVSD algorithm is used to achieve a user 

friendly speech in speech out interface.  

The system can be used for toys, office devices, and other 

consumer electronic products for it can offer an accurate, 

flexible and robust solution with extremely low cost.  

The key characteristics of the chip are summarized in table 6. 

Table 6. Characteristics of the chip 

Process technology 0.5 um CMOS 

Package 100-pin QFP 

Clock frequency 8.2MHz 

Supply voltage 2.2V~5.25V 

Power consumption 60mw 

Recognition speed 0.60 real-time 

Recognition rate 96.7% (30 phrases) 
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