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ABSTRACT 

 Signal-dependent error for least squares specular 
multipath estimators is analyzed for active sensors. The 
error analysis also applies to other deconvolution 
techniques for multipath estimation such as Projection 
Onto Convex Sets (POCS) that use square error as a 
constraint. The results explain how the selection of 
transmit signal affects estimator performance. Example 
mean square error plots are provided for a linear frequency 
modulation (LFM) signal to demonstrate the results. Given 
the set of possible locations for multipath components, the 
optimum signal to minimize square error can be selected 
using these results.  

1. INTRODUCTION 

 In active sonar and radar systems, estimation of the 
multipath response is the critical element of a variety of 
algorithms for enhanced sensor performance. Time 
variation in the sensor environment requires algorithms 
that estimate both the delay and Doppler of multipath 
components. The Doppler estimate is also useful for 
distinguishing direct from reflected paths. This paper 
considers a non-stationary environment that requires a 
rapid estimate of the multipath response using a single 
transmitted pulse.  
 For active sensors, the selection of the transmit signal 
determines the resolution performance of the system. The 
narrowband ambiguity function, defined as 
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is a measure of sensor resolution for the case with two 
specular targets separated in range delay by τ and Doppler 
frequency by υ  [1]. For multiple specular 
targets/reflectors, analysis of sensor resolution requires a 
more complex treatment to address all of the interactions 
between components. 

 In this paper, mean square estimation error is 
analyzed as a measure of sensor resolution performance. 
Least squares deconvolution is used for the estimator. This 
technique has been used for specular multipath estimation 
in a variety of applications [2-4]. The least squares error 
analysis is also relevant to other iterative techniques such 
as Projection Onto Convex Sets (POCS) that use square 
error as a constraint [5-8]. The error analysis is important 
for selection of the transmit signal based on known a
priori characteristics of the channel, and it is important for 
analyzing error performance of deconvolution-based 
estimators. 
 This paper is organized as follows: Section 2 
describes the channel model. Section 3 reviews the least 
squares delay-Doppler estimator. The error analysis is 
described in Section 4.  Section 5 presents results of 
applying the error analysis to a linear frequency 
modulation (LFM) transmit signal. Section 6 concludes the 
paper with a summary of results. 

2. CHANNEL MODEL 

 With N specular reflectors and a narrowband signal, 
active sensor operation within a time-varying multipath 
environment is modeled as 
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where y(t) is the receive signal, x(t) is the transmit signal, 
w(t) is white noise, and the triplet ),,( kkk τνα describes 

the complex amplitude, narrowband Doppler shift, and 
delay of the kth specular multipath component. This is a 
deterministic spreading function model of the channel. 
Time variation of ),,( kkk τνα is negligible given an 

adequately short observation interval.  
A discrete-time version of (2) is  

wAhy +=  (3) 
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where y is the received signal, A is a signal matrix, h is the 
channel response to be estimated, and w is white noise 
with 

Iww 2][ σ=HE   . 

Each column of A contains a time- and frequency-shifted 
version of the transmit signal representing the received 
signal from a different specular multipath component.  
This matrix can be generalized to model wideband 
conditions by modifying the columns to hold delayed and 
time-scaled versions of the transmit signal. 
 The matrix is formed using the method described in 
[3]. A Doppler sub-matrix is created, 
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where each column contains one of nv different Doppler 
shifts of the undelayed transmit signal. This matrix is then 
extended by applying the nd multipath delays by zero 
padding and shifting the A0 matrix: 
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The columns of A contain the received signals from all 
potential unit-amplitude multipath components. The h
vector is an ndnv x 1 column vector containing the 
amplitude of each multipath component: 
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The model represents the observed signal as a mixture of 
the component receive signals with additive white noise, 
i.e. the h vector expresses a linear combination of the 
columns of A that is combined with a white noise vector w
to form the observed signal y.

3.  LEAST SQUARES DECONVOLUTION 

 Least squares algorithms for multipath deconvolution 
produce the multipath estimate that minimizes the norm 
residual error, providing the estimate that "best explains" 

the received data in a square error sense. This procedure 
has been used for delay-only multipath estimation in [2] 
and extended to delay and Doppler in [3].  
 To improve performance and reduce the effects of ill-
conditioning, an indicator set is introduced to limit support 
to regions of strong matched-filter output. The estimate is 
set to zero for regions with matched filter output 
magnitude below a threshold. The indicator set support 
constraint can be applied with the matrix multiplication 

EI AIA =  , 

where each column of IE has exactly one element equal to 
one and all other elements equal to zero. The position of 
the unity element determines the column selected from A. 
The effect is to eliminate multipath components from the 
model. With the simplified model, the least squares 
estimate is then obtained as 
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Equation (6) is a pseudo-inverse applied with the 
simplified signal matrix, AI.  In white noise this yields the 
minimum mean square error estimate. 

4. ERROR ANALYSIS 

 The square-error of least-squares deconvolution can 
be derived using the singular value decomposition. The 
mean square error (MSE) is  
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Substituting  (3) yields  
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After substituting the singular value decomposition,  

H
I USVA = , (8) 

into (7), where U and V are orthonormal and S is a 
rectangular matrix of real singular values described by 
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the MSE is  
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where N is the size of the indicator set. Since the signal 
matrix, A, has normalized columns, λi must be less than or 
equal to one. Consequently the minimum MSE is Nσ2.
 The mean square error in (9) assumes the indicator set 
is known a priori. In a real system, this information is not 
known since this depends on the distribution and 
amplitude of multipath components in the environment. 
However, given approximate characteristics of the 
multipath environment, a typical indicator set can be 
analyzed. For example the indicator set for a cluster of 
tightly grouped multipath components can be estimated 
using the magnitude of the ambiguity function for the 
signal [4]. 
 Another approach to the error analysis is to transform 
the signal matrix such that it is an orthogonal matrix. In 
the transformed domain the multipath components are 
orthogonal and do not interact with each other. The 
reduction in norm of each transformed column represents a 
decrease in effective transmitted signal energy for that 
multipath component and leads to an increase in mean 
square error. The set of column norms is the set of λi in 
(9).
 To derive the transformation, consider the matrix 
AHA as the N component discrete ambiguity function. 
Each column of AHA is a vector of inner products of the 
multipath component for that column with all of the 
multipath components. The matrix AHA can be 
diagonalized using an orthonormal matrix V and expressed 
in the form1

SAVAV =H)(  , 

where S is diagonal. Equation (3) can then be rewritten as 
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After substituting  
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a transformed version of (3) is obtained: 

whAy += tt . (10) 

1 The SVD will yield an orthonormal V that produces a real-
valued diagonalized S. Other transformations will also work if S 
is allowed to be complex. 

The norms of the columns of At provide the set of λi to 
determine mean square error from (9). Minimum mean 
square error (Nσ2) is obtained when A starts as an 
orthonormal matrix.  

5. RESULTS WITH LFM 

 The mean square error for least squares deconvolution 
was analyzed for an LFM transmit signal using (9). Two 
different specular multipath grids were considered. LFM 
bandwidth and pulse width were varied. The first case 
used the grid shown in Figure 1. 

Figure 1. Uniform specular multipath grid 

The grid in Figure 1 has 80 multipath scatterers uniformly 
spaced by eight samples in range and 0.04 times the 
sampling frequency in Doppler. Mean square error is 
plotted as a function of LFM bandwidth in Figure 2 and 
LFM pulse width in Figure 3. 

Figure 2. Mean square error vs. LFM bandwidth for 
uniform specular multipath grid. Minimum error is 83.7. 
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Figure 3. Mean square error vs. LFM pulse width for 
uniform specular multipath grid. 

The peaks in Figures 2 and 3 correspond to cases where 
the ridge of the ambiguity function matches the slope of a 
sub-lattice within the grid. These are cases where the 
received signals from different scatterers are nearly 
identical (ambiguity function magnitude close to one), 
causing the signal matrix to become ill-conditioned and 
the MSE to grow.  
 The ill-conditioning effect is more pronounced with 
the sloped grid of Figure 4. The results for this grid are 
shown in Figure 5. 

Figure 4. Grid with linear range-Doppler variation. 

Figure 5. Mean square error vs. LFM bandwidth for 
multipath grid with linear range-Doppler variation.

In Figure 5 the broad error peak occupies the bandwidth 
region where the slope of the ambiguity ridge is close to 
the Doppler-range slope within the grid. 

6. CONCLUSION

 The error for a specular multipath estimator using 
least squares deconvolution was derived using the singular 
value decomposition. The error analysis also applies to 
other deconvolution techniques for multipath estimation 
such as POCS that use square error as a constraint. The 
mean square error for least squares deconvolution was 
analyzed for an LFM transmit signal. Plots of MSE vs. 
LFM with varying bandwidth and pulse width were 
presented. The minimum error for these cases was within 
5% of the lower bound on MSE given by the error 
analysis. 
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