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ABSTRACT

Synthetic Aperture Sonar (SAS) imagery is largely used in de-
tection, location and classification of underwater mines laying or
buried in the sea bed. This paper proposes a detection method us-
ing Higher Order Statistics (HOS) on SAS images. The proposed
method can be divided into two steps. Firstly, the HOS (Skewness
and Kurtosis) are locally estimated using a square sliding compu-
tation window. In a second step, the results are focused by a cor-
relation process. This enables the precise location of the objects.
This method is tested on real SAS data containing both underwater
mines laying on the sea bed and buried objects.

1. INTRODUCTION

The detection and classification of different types of underwater
mines is a present crucial strategic task [1]. Thanks to their high
resolution, the images provided by Synthetic Aperture Sonar (SAS)
are of great interest for this purpose and have been increasingly
used in sea bed imagery. After a classical processing, the beam-
forming, interesting information can be extracted from SAS im-
ages of the sea bed.

But these images are seriously corrupted by a speckle noise
which gives a granular aspect to the image and disturbs its inter-
pretation. A plentiful literature deals with processing of sonar im-
ages to enhance information. Some of the methods use smooth-
ing filters [2]. Other papers propose segmentation methods [3, 4]
based on a statistical model or using first and second order statis-
tics. Higher Order Statistics (HOS) have been used as a powerfull
tool in various signal processing applications [5, 6]. Nevertheless,
they have very rarely been used to address sonar applications. To
our knowledge, the only example is given by Aridgides et al. [7]
who used HOS estimators (Skewness and Kurtosis) to extract fea-
tures from side scan sonar images in order to classify sea mines by
a fusion process.

In this paper, a detection method using third and fourth order
statistics is proposed. It can be divided into two steps. In the first
step, Kurtosis and Skewness are evaluated on a square window for
each pixel of the image (section 2). The second step consists in
focusing the result in order to obtain the correct location of the
detected object (section 3). Finally, this method is tested on real
data containing both underwater mines laying on the sea bed and
buried objects (section 4).

2. HOS ESTIMATORS ON SAS IMAGES

2.1. Definition of the estimators

Among the plentiful choice of tools proposed by the Higher Order
Statistics (HOS), the most famous estimators are Skewness (3rd
order moment) and Kurtosis (4th order) [8]. If the rth order central
moment of random samples X is noted µX(r), the definition of the
Skewness estimated on X is given by:

SX =
µX(3)

µ
3/2
X(2)

(1)

A definition of the Kurtosis is given by:

KX =
µX(4)

µ2
X(2)

− 3 (2)

Skewness gives a measure of symmetry of a random distribution,
and Kurtosis measures whether the data are peaked or flat relative
to a normal distribution. These estimators are null for a normal
distribution.

2.2. Results on a synthetic image

To introduce the detection method used in this paper, it is tested
on a synthetic image modelising a SAS image. It consists of a
square (11 × 11) (Fig. 1), with an amplitude of 10, modeling the
echo reflected by an object, surrounded by a noise. A Weibull
law describes efficiently the amplitude R of the noise in a SAS
image [4]. Therefore, the noise on the synthetic image is generated
by a Weibull law described by the following probability density
function:

WR(R) =
δ

α

(
R

α

)δ−1

exp

{
−

(
R

α

)δ
}

; R ≥ 0 (3)

with α = 0.25 (this ensures a realistic signal to noise ratio) and
δ = 1.65 (this value being estimated close to the parameter on real
data).

Skewness and Kurtosis are then evaluated on a square window
(11 × 11 here) for each pixel of the image (Fig. 2). The choice of
the size of the estimation window is discussed in the next subsec-
tion.

To explain the results obtained on Fig. 2, we consider p the
proportion of the filtering window composed of deterministic pix-
els (i.e. belonging to the simulated echo) and (1 − p) the pro-
portion of random values (Fig. 1). Considering µ′

E(r), µ′

N(r) and
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Fig. 1. Modelised echo and definition of the parameter p.
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Fig. 2. Skewness and Kurtosis evaluated on the synthetic image
with a 11 × 11 window.

µ′

X(r) the rth order non-central moments respectively computed
on the “echo-part” of the filtering window, the “noise-part”, and
the whole window, the following relation holds:

µ′

X(r) = p.µ′

E(r) + (1 − p).µ′

N(r) (4)

Moreover, considering A the amplitude of the echo and the Weibull
law describing the noise (equation 3), we have:

µ′

E(r) = Ar and µ′

N(r) = αrΓ(1 − r/δ) (5)

If the moments of the noise are supposed to be negligible com-
pared with the moments of the echo, and if we take into account
the relationship between the central and non-central moments [8],
an approximation of Skewness (equation 1) can be made by:

SX(p) ≈ 1 − 3p + 2p2

p1/2(1 − p)3/2
(6)

Similarly, an approximation of Kurtosis (equation 2) is given by:

KX(p) ≈ 1 − 7p + 12p2 − 6p3

p(1 − p)2
(7)

The behaviour of these approximations versus parameter p is shown
on Fig. 3. An interesting property is the independence of these val-
ues from the amplitude of the echo.

From the results presented on Fig. 2, we can make the follow-
ing observations:

• In the noisy background, the HOS estimators lead to small
values. This corresponds to the low values of the statistical
moments of the Weibull law (note that in this specific case,
the approximations proposed in (6) and (7) do not hold any-
more).

• Square structures can be seen around the echo. They are
composed of pixels with high values, the highest being in
the corners.

The size of these squares corresponds to the size of the echo (11)
plus the size of the computation window (11). As can be seen on
Fig. 3, the maximal values for the estimators are reached for the
minimal values of parameter p. In our case, this corresponds to
one single pixel of the echo included in the filtering window (i.e.
the corner of the structure). If the number of deterministic pix-
els increases, the value of the estimators decreases, that justify the
shape of the square structures on the images and the decreasing
values along the edges and inside the square. From (6) and (7), for
low values of p, Skewness can be approximated by 1/

√
p and Kur-

tosis by 1/p. This explains that for a 11 × 11 window, the highest
value on the image of Skewness is close to 11 =

√
11 × 11 and

121 = 11 × 11 for Kurtosis (Fig. 2).
A critical case exists for the Kurtosis. Indeed, when p goes

above 0.5 (there are more deterministic pixels than pixels from the
noisy background), the Kurtosis value increases with p (Fig. 3).
The case of p = 1 is particular (infinite Kurtosis) and is put to
its maximum value on the image. For Skewness, negative values
appear for p > 0.5 (Fig. 2(a) near the center of the square) as
predicted by Fig. 3.

In the following, only the results obtained with Kurtosis will
be considered, the behaviours of the two estimators being similar
for p < 0.5.
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Fig. 3. Approximation of the HOS estimators versus the determin-
istic pixels proportion p.

2.3. Influence of the size of the computation window

In the previous subsection, the computation window was corre-
sponding to the size of the element to detect, the echo (11 × 11),
allowing to see some properties of the method. The influence of
the choice of this size is studied in this subsection.

We can see on Fig. 3 that if p > 0.5, Kurtosis increases again
to become infinite for p = 1 (all pixels of the window correspond
to the echo). As a consequence, if we choose a window smaller
than the element to detect, the square structure on Kurtosis im-
age does not appear clearly (Fig. 4(a)). A solution is to choose a
size avoiding this case: for instance a size twice as big as the echo
(Fig. 4(b)). Note that in practice, real echoes are very small. Fur-
thermore, the use of a too small filtering window does not lead to
a robust estimation of the HOS.

We have seen in the subsection 2.2 that the highest value of
Kurtosis on the image only depends on the size of the computation
window and that bigger is this window, higher is this value. But
this size has to be restricted. Indeed, we have seen in the same
subsection that the size of the square structure on the Kurtosis im-
age is equal to the size of the echo plus the size of the computation
window. If several elements have to be detected on the SAS image,
the squares associated to each echo can overlap if a too big com-
putation window is used. This situation is illustrated on Fig. 5(b):
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Fig. 4. Kurtosis evaluated on the synthetic image with different
sizes of window.
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(b) 21 × 21

Fig. 5. Kurtosis evaluated on a synthetic image containing two
echoes with different sizes of window.

Kurtosis has been evaluated on an other synthetic image with two
echoes of different sizes, different amplitudes and distant of 15
pixels. A solution is to choose a size that takes this into account
(Fig. 5(a)). On this last figure, we can verify the independence of
the Kurtosis value from the amplitude of the echo.

To conclude, we can say that the choice of the size of the win-
dow is a tradeof between the size of the element we have to detect,
and the space separating two features.

3. FOCUSING OF THE RESULTS

In this section, the second step of the detection method is de-
scribed. It consists in focusing the detected squares to one point
corresponding to the correct location of the sought element. This
is achieved by a simple correlation of the Kurtosis image with a
frame with well suited dimension. The size of this frame must be
chosen taking into account the size of the window used to build
the image, and the dimension of the sought element (the echo),
as we have seen in section 2.2. We can see on Fig. 6 the result
of a correlation using a 31 × 31 window on the Kurtosis image
of the synthetic image (Fig. 1) obtained with a 21 × 21 window
(Fig. 4(b)). We can see on the zoomed image (Fig. 6(b)) the maxi-
mum value of the correlation at the exact position of the center of
the echo of the SAS image. A simple threshold of this last image
then allows an easy detection and precise location of the object.

Given the size of the window, which is fixed before the Kurto-
sis image was built, the dimension of the echoes is not accurately
known. To take this fact into account , a solution is to take, for
the correlation, a frame with a given “thickness”. For example, on
the synthetic image containing two echoes used in section 2.3, the
size of the echoes were respectively 11 × 11 and 21 × 21. If a
41 × 41 frame is chosen, only the wider echo is correctly focused
(Fig. 7(a)). To solve this problem, a 41 × 41 (external size) frame
with a thikness of 5 is chosen. This allowes to have a relatively
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Fig. 6. Correlation of Kurtosis image 21 × 21 with a 31 × 31
frame.
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Fig. 7. Correlation of Kurtosis image 21 × 21 of the synthetic
image containing two echoes with a 41 × 41 frame with different
thikness.

good detection of the two echoes (Fig. 7(b)).

4. RESULTS ON REAL DATA

The proposed detection method has been tested on various real
SAS data. These data have been provided by the DGA (Délégation
Générale pour l’Armement, France).

4.1. SAS data with underwater mines laying on the sea bed

In this subsection, the method is performed on a SAS image con-
taining an underwater mine laying on the sea bed recognizable
thanks to the shadow projected on the sea bed and the echoes re-
flected by the object. This image represents a region of 3.5m by
10m, with a resolution of approximately 1cm in both dimensions
(Fig. 8(a)). After the computation of the Kurtosis image using a
21 × 21 window, taking into account the dimension of the echoes
and the space in between, the resulting image is correlated with a
31 × 31 frame with a 4 pixels thickness (permitting to take into
account the uncertainty on the dimension of the echoes). On the
result (Fig. 8(b)) we can recognize two main little regions on the
left, with high values, corresponding to the two main echoes on
the SAS image characterizing the mine.

4.2. SAS data with buried object

In this subsection, the detection method is tested on more com-
plex SAS data. Indeed, the SAS image contains several buried or
partially buried objects. This image represents a sea bed region of
about 9m by 10m, with a resolution of 6cm in both dimensions. On
this image (Fig. 9), the echoes (see the numbered boxes) reflected
by the objects are hardly visible apart from a partially buried cylin-
drical mine on the left (1). After having built the Kurtosis image
with a 11 × 11 computation window, the result is correlated with
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Fig. 8. SAS image containing a laying mine and result obtained
by the detection method.

a 17 × 17 frame with a 4 pixels thikness. The result (Fig. 10) is
extremely promising: buried objects, that were badly visible on
the SAS image, appear clearly on the resulting image (a rock (2)
and a buried mine (3) on the right of the cylindrical mine, an other
buried mine at the top (4) and another on the left (5)). Some false
alarms appearing at the bottom are due to unidentified objects.

5. CONCLUSION AND PERSPECTIVES

A detection method in SAS imagery, using higher order statistics,
has been proposed and studied in this paper. This detection uses
the echoes reflected by the objects contained on the scene. The
correlation step focuses the result in order to obtain the exact lo-
cation of the objects. The robustness of the method can be under-
lined, the result being theorically independent from the amplitude
of the echoes and of high value on the echoes compared with the
noise. A drawback of this method could be the fact that we should
to know some characteristics of the echoes ( maximal dimension,
minimal space between them) before using the process, but this
can be solved by simple a priori knowledge on the sought objects.
In the correlation step, the use of a thick frame allowes to model
the imprecision on the knowledge of the echo dimension. The
promising results obtained on real data, even in the case of buried
objects with a low signal to noise ratio, highlights the interest of
this method.

The perspectives of this work include the recognition and clas-
sification of the detected objects. An other idea would be to use
the segmentation results provided by other methods [4] to reduce
the false alarm rate.
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Fig. 9. SAS image containing buried objects (dB scale).
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Fig. 10. Result obtained by the detection method.
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