
FAST IMPLEMENTATION
OF THE MPEG-4 AAC MAIN AND LOW COMPLEXITY DECODER

Antonio Servetti
�
, Alessandro Rinotti

�
, Juan Carlos De Martin

�

�
Dipartimento di Automatica e Informatica/

�
IEIIT-CNR

Politecnico di Torino
Corso Duca degli Abruzzi, 24 — I-10129 Torino, Italy
E-mail: [servetti

�
alessandro.rinotti

�
demartin]@polito.it

ABSTRACT

We present a fast software implementation of the MPEG-4
AAC Main and Low Complexity (LC) decoder. The reference
implementation is analyzed and selected algorithms are presented
to improve the performance of most of its building blocks, i.e.,
bitstream de-formatter, noiseless decoding, prediction, and filter-
bank.

The code is further optimized by means of assembler proce-
dures for the filterbank and prediction tools to exploit the Intel
Pentium Streaming SIMD Extension (SSE) instruction set. SSE
performs operations over four single precision floating-point num-
bers in a single instruction using 128-bit long registers. Results
shows that the presented decoder proves to be almost five times
faster than the reference implementation, while preserving its full
compatibility with the MPEG-4 standard.

1. INTRODUCTION

The increasing demand for digital audio media is mostly ad-
dressed by high-quality audio coding devices implementing the
MPEG-1 Layer-3 standard. Only recently its scheduled succes-
sor, the MPEG-4 Advanced Audio Coding (AAC) standard [1], is
gaining recognition. Among the factors slowing down the adop-
tion of this advanced standard, computational complexity is one of
the most important.

The MPEG-4 AAC coder is approximately 30% more bitrate
efficient than the MP3 algorithm and outperforms its predecessor
achieving “indistinguishable” CD audio quality at 128 kb/s [2].
The quality of AAC streams, however, must be supported by fast
decoders with a speed comparable to current MP3 players. The
reference AAC ISO software does not meet such speed require-
ment, making a thorough revision of the code mandatory.

Previous works addressed the design of AAC software de-
coders (e.g., [3]), while other papers analyzed possible optimiza-
tions for implementations on DSP [4][5][6] or RISC processors for
portable players [7].

In this paper we presents an MPEG-4 AAC software im-
plementation optimized for speed that exploits the Intel Pentium
Streaming SIMD Extension (SSE) instruction set.

The paper is organized as follows. Section 2 and 3 describe
the MPEG-4 AAC decoder tools we focused on and the capabili-
ties of SSE instructions. Section 4 presents a performance analysis

This work was supported in part by Telecom Italia Lab, Italy,
http://www.telecomitalialab.com.

Formatter

De−

Bitstream

Noiseless Decoding

Scale Factors

M/S

PNS

Prediction

Intensity/Coupling

TNS

Filterbank

Processing

Post

Inverse Quantizer

Output

Time

Signal

MPEG−4 AAC

Coded Audio Stream

Fig. 1. MPEG-4 AAC decoder block diagram.

of the ISO reference software followed in Section 5 by detailed de-
scription of the presented optimization process. The results of the
optimized implementation are discussed in Section 6.

2. AAC ALGORITHM

The MPEG-4 standard [1] defines several tools with different au-
dio coding algorithms to establish optimal coding efficiency for a
broad range of applications that span from low bitrate coding of
speech signals up to high-quality multi-channel audio coding. The
key component of MPEG-4 General Audio, that covers the bitrate
range from 16 kb/s per channel up to 64 kb/s and higher, is the
AAC tool, backward compatible with the MPEG-2 AAC [8].

The AAC encoding algorithm, as other perceptual encoders,
e.g., the widely known MP3, uses psychoacoustics to reach the
target of efficient compression. It is a lossy compression tech-

V - 2490-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

nique where the quantization noise is carefully distributed over
frequency bands so that it is masked by the signal energy.

AAC supports up to 48 main audio channels with sample rates
that range from 8 kHz to 96 kHz. Different trade-offs between
quality and complexity are provided by three profiles: Main pro-
file, Low Complexity profile, and Scalable Sample Rate profile.

Fig. 1 shows the arrangement of the building blocks of an
MPEG-4 Main decoder [9]. They are here briefly illustrated to
understand the optimization process described in Section 5.

Bitstream De-formatter: It parses the bitstream to separate
AAC data into the parts used as input for each tool. The length
of the AAC frames varies from frame to frame because of the bit
reservoir technique. Each frame represents 1,024 PCM samples
per channel. Two different headers are specified in the AAC stan-
dard. The Audio Data Interchange Format (ADIF) header is for
file-based applications and it is present at the beginning of the
file. The Audio Data Transport Stream (ADTS) header is suited
for transmission protocols and it consists of one header per AAC
frame.

Noiseless Decoding: It is used to reduce redundancy of scale-
factors and quantized spectral coefficients. The latter are seg-
mented into sections and a different Huffman codebook can be
used to code each section. There are eleven Huffman codebooks
for the spectral data and one differential scale factor codebook.

Prediction: In the Main profile an optional second-order back-
ward adaptive predictor, with a lattice structure, improves coding
efficiency especially for stationary signals. For each spectral com-
ponent up to 16 kHz there is one corresponding predictor where
each predictor exploits the autocorrelation between spectral com-
ponent values of the two preceding frames. The predictor parame-
ters are adapted to the current signal statistics on a frame-by-frame
base, using an LMS-based adaptation algorithm.

Filterbank: Its function is to convert spectral values into a
time-domain output by an Inverse Modified Discrete Cosine Trans-
form (IMDCT) filter that can dynamically switch between block
lengths of 2,048 and 256 points. Long blocks offer improved cod-
ing efficiency for stationary signals and short block present opti-
mized coding capabilities for transient signals.

3. SSE INSTRUCTIONS

With the launch of the Intel Pentium III processor many new
features are available for application developers [10]. Among
them seventy new instructions, called Streaming SIMD Extensions
(SSE), improve the Pentium II as MMX did for the Pentium. Pro-
cessors having Single Instruction Multiple Data (SIMD) support
process more than one data element in one instruction. MMX and
SSE share the concept of SIMD, but MMX instructions represent
SIMD for integers while SSE instructions are SIMD for single-
precision floating point numbers. SSE instructions operate on four
32-bit floats simultaneously: eight new 128-bit registers have been
defined and applications can execute non-SSE and SSE instruc-
tion at the same time. Not all the new instructions are for SIMD
floating-point. Of the 70, 50 are SIMD floating-point, 12 are for
SIMD integer, and the remaining eight are cacheability instruc-
tions. Even if SSE can perform operations on four single precision
floating-point numbers in a single instruction, the number of in-
structions when using SIMD and SSE is not exact one-fourth of
the non-SIMD case. Some instructions will be required to rear-
range the data (this process is called swizzling) so that it is in a
format acceptable to the SIMD instructions. In practice, SIMD in-

Reference Software CPU Usage Distribution

26% Filters

40% In/Out
2% Other

18% Huffman

14% Prediction

In/Out Filters Huffman Prediction Other

Fig. 2. CPU usage distribution between MPEG-4 AAC decoding
blocks.

structions should be able to roughly double the efficiency of the
operations [11].

Hence audio applications, which utilize floating-point calcula-
tions, stand to benefit from the usage of SSE.

4. REFERENCE SOFTWARE DECODER ANALYSIS

The MPEG-4 AAC reference software implementation has been
developed by a large group of contributors with the aim of imple-
menting all the required functionalities and acting as a reference
for stream compatibility issues. Since it was not developed to de-
liver good performance, it suffers from heavy computational load
even on modern processors.

Version 1.0 of the ISO MPEG-4 Natural Audio Decoder refer-
ence software, tested on a 866 MHz Pentium III processor with
128 MB of RAM memory, and compiled optimized for speed
with the Intel C compiler v.5.0 for the Windows operating system,
achieves only 8.5 realtime speed for a stereo signal.

With regard to this implementation, a profile session can eval-
uate the CPU cycle distribution between the various AAC modules
described in Section 2. The results are shown in Fig. 2.

It can be noticed that the majority of time is spent in the in-
put/output functions (bitstream reading and parsing) that are build
upon a generic library for bit manipulation. Secondly, filters
(above all MDCT and windowing) take 26% of the overall load,
while Huffman decoding represents 18% of the whole decoding
process. Since the profiling was applied on the decoding of a Main
profile bitstream, part of the time (14%) is spent in the prediction
process, a tool not used in the Low Complexity profile.

5. DECODER OPTIMIZATION

Each different building block of the AAC decoder was re-
implemented to exploit the functionalities of the Intel SSE instruc-
tion set. Speed improvements have been provided for the Main
and Low Complexity profiles maintaining full conformance with
the standard.

A detailed description of each improved algorithm follows.

5.1. Bitstream Processing

The AAC bitstream syntax is very flexible and permits its instanta-
neous data rate to vary as required by the audio signal: the length

V - 250

➡ ➡

of each frame is, therefore, not constant and variable-rate headers
are used. As a consequence, the bitstream parsing function of the
reference software is very complex and slow. It does not exploit
the knowledge of the bitstream format (frame and field size) to
reduce unnecessary checks while reading the data buffer.

An improved bit manipulation library was developed: many
levels of indirection were removed and needless checks on buffer
overruns were skipped.

A boost in performance was obtained using a 32-bit cache to
reduce bitstream reads. Only on cache misses a new word is fed
into the buffer cache of the decoder, so successive bit level ac-
cesses can be carried out using only fast bit operators.

5.2. Huffman decoding

The Huffman decoding function operates on 1,024 compressed
spectral coefficients read from the bitstream. They are split into
several sections each one using a different Huffman codebook.

Original ISO code uses a fairly efficient algorithm that saves
memory and CPU cycles: Huffman codewords are read from the
bitstream and searched in the corresponding codebook from the
shortest to the longest one. That is because shorter codes are more
common than longer codes, and this way short codes are decoded
quite fast while long ones take longer.

When speed is the main concern and more memory can be
used, a faster decoding technique can be implemented building a
lookup table with an efficient structure. Firstly, the decoder un-
signed Huffman codebooks have been extended to speed up the
decoding, but maintaining full compatibility with the standard.
Secondly, multi-level tables have been designed for faster code-
word search. If N is the length of the longest codeword of a
codebook, a first level lookup table that covers only � � bits, with� � � � , is used. The decoder reads � � bits from the stream and
looks them up in the table. The table will tell if the codeword is
that many bits or less, in which case it is completely decoded, or if
it is longer, and more bits (� �) are needed to continue the search
process on a second level table.

In the worst case two table lookups must be performed but de-
coding test show that usually above 90% of the compressed spec-
tral values are present in the first lookup table with no need of the
second step. The memory used to store the new Huffman tables is
typically affordable for a software decoder, compared to the case
of a single lookup table with � 	

entries. Using the proposed tech-
nique, Huffman decoding module is now five times faster than its
original implementation.

5.3. Prediction

In AAC decoding a second-order backward-adaptive lattice struc-
ture predictor is used for each spectral component up to 16 kHz.
Since there is no dependence between prediction coefficients of
the same frame then computation can be parallelized with SIMD
instructions: four spectral coefficients can be processed in a single
instruction.

The LMS-based adaptation algorithm applied to predictor pa-
rameters was modified to exploit SIMD capabilities and to reduce
memory access. A dependence graph was built for variables to
optimize access to SSE registers. We grouped together operations
on independent data so that out-of-order Pentium III processor in-
structions could be used to improve performance.

Table 1. Comparison of time (ms) spent during profiler session by
the ISO reference software and the optimized decoder using the
aacs48s96.aac bitstream.

Tool Reference Optimized Speed
Time (ms) Time (ms) Improvement

In/Out 11340 3188 x 3.55
Filters 7554 1652 x 4.57
Huffman 5198 1062 x 4.89
Prediction 3980 1936 x 2.05
Other 473 187 x 2.52
Total 28545 8025 x 3.55

5.4. Filters

The filterbank, a fundamental component of the AAC decoder,
uses an Inverse Modified Discrete Cosine Transform (IMDCT)
to convert the internal time-frequency representation into a time-
domain output signal. The IMDCT employs a technique called
Time-Domain Aliasing Cancellation [12] to transform, for each
channel, the N/2 time-frequency values
 � � into the N time-
domain values � � � . The analytical expression is:

� � � � ��
� � � ��

� � �
 � � � � ! # � %� ') +) � - ' / +
1

� - 3 5
) � 7 5 : : : 5 � < 1 5 (1)

where n is the sample index, N the transform window length, i the
block index, and) � � ' � > � + 1 - > � . The transform block length
N can be set to either 2048 or 256 samples.

After a manipulation of the input data the IMDCT filter can
be implemented via an N/4 FFT algorithm as shown in [13]. The
ISO reference software FFT implementation was rewritten in as-
sembler to take advantage of the Pentium SIMD instructions and
SSE registers. The Decimation In Time (DIT) approach for the
Radix-2 FFT algorithm was used [14]. The first and second stage
operations were redesigned for SIMD processing while the stan-
dard algorithm was applied to the next stages on four data inputs
simultaneously. The first two FFT stages perform simple trans-
forms on respectively two and four spectral values. An optimized
algorithm and a data swizzling procedure were developed to ex-
ploit short transform characteristics and SIMD parallelism also in
these stages.

6. RESULTS

The performance of the optimized decoder implementation has
been evaluated using an encoded test signal from the MPEG repos-
itory. It is a 96 kb/s AAC main profile stereo audio signal sampled
at 48 kHz.

Firstly, we compared the results of function profiling for the
ISO reference software and for the presented optimized version.
As it is shown in Table 1 the execution time of the decoder was re-
duced from 28.54 seconds to 8.02 seconds. Timing data from pro-
filing sessions is especially useful to evaluate speed improvements
on each decoding block. We notice that filtering operations took
advantage of SIMD instructions with a speed increase of nearly
five times. This is also the result of a better code implementation,

V - 251

➡ ➡

Fig. 3. MPEG-4 AAC decoder performance.

e.g., many values for windowing were computed in advance and
needless functions were removed during the code reorganization.
The new design of Huffman decoding and of bitstream manipula-
tion were the key for a speed improvement of 4.89 and 3.55 times
respectively. The prediction tool is now two times faster than the
reference code.

A PC a with Pentium III 700 MHz processor was used in the
decoding speed evaluation. Fig. 3 shows the average CPU usage
in frame decoding for a 96 kb/s audio sampled at 48 kHz. The ISO
reference decoder provides only 4.5 realtime decoding (4.36 ms),
while the Pentium III optimized version is nearly five times faster
(0.88 ms). The presented implementation also proves to be 21%
faster than an existing AAC software decoder designed for speed,
the FAAD decoder ver. 26102001.

The optimized decoder has been successfully tested against
the standard test streams for computational accuracy and bit-
compliance in accordance with the conformance standard by the
ISO/IEC 14496-4, 2000 [15]. To be called an ISO/IEC 14496-3
audio decoder, the decoder shall provide an output such that the
RMS level of the difference signal between the output of the de-
coder under test and the supplied reference output (both normal-
ized to be in the range between -1 and +1) is less than �

� � � �
� � � .

In addition, the difference signal shall have a maximum absolute
value of at most �

� � � relative to full-scale.

7. CONCLUSIONS

We presented several techniques for implementing a fast MPEG-4
AAC audio decoder that exploits modern Intel Pentium SSE in-
structions operating on floating point data. A detailed analysis of
the reference software implementation is provided. Results shows
how decoding performances can be improved especially for filter-
bank processing and Huffman decoding. The optimized decoder
proves to be almost five times faster then the reference implemen-
tation, while preserving its compatibility with the MPEG-4 stan-
dard.

8. REFERENCES

[1] ISO/IEC JTC1 SC29/WG11, “ISO/IEC FDIS 14496-3 Sub-
parts 1, 2, 3, Coding of Audio-Visual Objects - Part 3: Au-
dio,” October 1998.

[2] M. Bosi, K. Brandenburg et al., “ISO IEC MPEG-2 Ad-
vanced Audio Coding,” Journal of Audio Enginnering Soci-
ety, vol. 45, no. 10, pp. 789–814, October 1997.

[3] M.A. Watson and P. Buettner, “Design and implementation
of AAC decoders,” IEEE Transactions on Consumer Elec-
tronics, vol. 46, no. 3, pp. 819–824, August 2000.

[4] K.H. Bang, J.S. Kim, Y.C. Park, and D.H. Youn, “Design op-
timization of a dual MP3/AAC decoder,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Processing, May 2002, vol. 4,
pp. 3776–3779.

[5] K.H. Bang, J.S. Kim, Y.C. Park, and D.H. Youn, “Design op-
timization of MPEG-2 AAC decoder,” IEEE Transactions on
Consumer Electronics, vol. 47, no. 4, pp. 895–903, Novem-
ber 2001.

[6] J. Chen and H.M. Tai, “MPEG-2 AAC coder on a fixed-point
DSP,” IEEE Transactions on Consumer Electronics, vol. 45,
no. 4, pp. 1200–1205, November 1999.

[7] K.S. Lee, Y.C. Park, and D.H. Youn, “Software optimization
of the MPEG-audio decoder using a 32-bit MCU RISC pro-
cessor,” IEEE Transactions on Consumer Electronics, vol.
48, no. 3, pp. 671–676, August 2002.

[8] ISO/IEC 13818-7, “Information Technology - Generic Cod-
ing of Moving Pictures and Associated Audio, Part 7: Ad-
vanced Audio Coding,” 1997.

[9] K. Brandenburg and O. Kunz and Akihiko Sugiyama,
“MPEG-4 Natural Audio Coding,” Signal Processing: Im-
age Communication, vol. 15, no. 4, pp. 423–444, January
2000.

[10] Intel, “IA-32 Intel Architecture Software Developer’s Man-
ual,” vol. 2, no. 245471, 2001.

[11] S. Thakkar and T. Huff, “Internet Streaming SIMD Exten-
sions,” IEEE Computer Magazine, vol. 32, no. 12, pp. 26–34,
December 1999.

[12] J.P. Princen, A.W. Johnson, and A.B. Bradley, “Sub-
band/transform coding using filter bank designs based on
Time Domain Aliasing Cancellation,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Processing, 1987, pp. 2161–
2164.

[13] P. Duhamel, Y. Mahieux, and J.P. Petit, “A fast algorithm for
the implementation of filter banks based on ’Time Domain
Aliasing Cancellation’,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, 1991, vol. 3, pp. 2209–2212.

[14] V.P. Rodriguez, “A radix-2 FFT algorithm for modern sin-
gle instruction multiple data (SIMD) architectures,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing, 2002,
vol. 3, pp. 3220–3223.

[15] ISO/IEC, “Information technology – coding of audio-visual
objects – part 4: Conformance testing,” ISO/IEC 14496-4,
2000.

V - 252

➡ ➠

