|

A MEMORY AND COMPUTATION EFFICIENT STRUCTURE FOR MPEG
POLYPHASE SYNTHESIS

Mohamed F. Mansour

DSP Solutions R&D Center,
Texas Instruments Inc.,

Dallas, TX 75243, {mfmansour@ti.com}

ABSTRACT

We propose a new structure for polyphase synthesis
in MPEG-1 audio standard. The algorithm is based
on factorizing the DCT matrix in a way similar to
FFT factorization. The proposed algorithm reduces
the memory requirement significantly even with direct
implementation. With optimized implementation, the
computational requirement can be reduced consider-
ably as well.

1. INTRODUCTION

MPEG-1 audio standard [4] is the most popular au-
dio standard today. In particular, layer III audio for-
mat (mp3) has gained much popularity and become a
standard compression technique for audio files on the
internet. The polyphase synthesis part of the MPEG
audio decoder consumes a significant amount of compu-
tational and memory resources primarily because of the
matrixing operation with the Discrete Cosine Trans-
form (DCT) matrix. It was reported in [3] that the
DCT matrixing operation represents 40% of the over-
all decoding time. This part is common between all
layers in the MPEG-1 standard. It is frequently imple-
mented on a special hardware (usually with small mem-
ory size) to accelerate the overall performance. Many
efficient structures of the MPEG polyphase synthesis
have been proposed in the literature (e.g., [2] and [3]).
However, the primary goal of these algorithms was to
reduce the computational requirements of the decod-
ing. In this paper, we propose an algorithm that is
designed to significantly reduce the memory require-
ment of the polyphase synthesis. Moreover, with op-
timized implementation the complexity is significantly
reduced as well. The algorithm is based on factorizing
the DCT matrix to much smaller matrices using basic
trigonometric relations in a way very similar to FFT
factorization.

The DCT matrixing described in this paper is com-
mon between the three layers of the MPEG-1 standard.

0-7803-8484-9/04/$20.00 ©2004 IEEE

V -245

A similar approach can be used to simplify the calcu-
lation of the IMDCT in layer III decoding. However,
the improvement is not significant in this case because
of the relatively small IMDCT matrix size.

This paper is organized as follows. In section 2, we
give a brief description of the MPEG standard recom-
mendation of the polyphase synthesis filter. The pro-
posed algorithm is described in section 3 and the ef-
ficient implementation of the algorithm is desribed in
section 4.

2. MPEG RECOMMENDATION

The MPEG standard recommendation adopted the
polyphase implementation of the cosine-modulated fil-
ter banks ([1], chapter 8). The overall decoder struc-
ture is illustrated in figure 1.

(Begin)

A

Input 32 subband Samples

A

DCT Matrixing

!

Convolving with the polyphase
Filters of the Prototype Filter

'

Upsampling by 32 and
interleaving

Output 32 reconstructed
PCM Samples

End

Fig. 1. MPEG Standard Polyphase Synthesis

ICASSP 2004

The DCT matrixing in the polyphase synthesis is
performed using a direct matrix multiplication :

31
fori=0t063 V=Y NS (1)
k=0

where S}, are the input 32 subband samples, and

™

Nip = cos((1 + 16)(2k + 1) 64) (2)

This above matrix multiplication requires 2048 mul-
tiply and accumulate operations (MACs). If the sym-
metry of IV;;, is exploited then the total calculation may
be reduced to 1088 MACs. The size of the DCT ma-
trix is 2048 words. If the symmetry is exploited then
only 1088 words need to be stored. It should be men-
tioned that the common fast algorithms of DCT using
FFT calculation are generally inefficient in the above
implementation because of the relatively small size of
the DCT matrixing.

Note that, the following part of the polyphase syn-
thesis that includes convolving with the polyphase rep-
resentation of the prototype filter followed by interpo-
lation cannot be optimized further with the approach
described in this paper.

3. PROPOSED ALGORITHM

3.1. Algorithm

The idea of the algorithm is to factorize the DCT ma-
trix using basic trigonometric relations in a way very
similar to FFT factorization. The 32-element sum is
reduced to two summations with order four and eight.

The first step is to put the data in matrix form using
row reordering. The 32-elements input data vector is
reordered as an 4x8 matrix, and the 64-elements out-
put vector is reordered as an 8 X8 matrix. Let ¢ = 8p+q,
where p,q=0to 7, and let k¥ = 8l +m, where I =0 to
3, and m = 0to 7, then

Vip,q) = i 23:S(l,m)cos((8p—|—q—|—16)(16l—|—2m—|—

m=01=0

1).7/64)

after straightforward trigonometric manipulation
and removing the terms that are multiple of 2w, we
have,

cos(8p + ¢+ 16)(161 + 2m + 1)7/64) =

cos(lgm/4) cos((2m + 1)(¢ + 16).7w/64 + p(2m +
1)7/8)—

sin(lgm/4) sin((2m+1)(g+16).7/64 4 p(2m + 1)7/8)

Define,

3 -
g =D stmes))
Gs(q,m) = S(1,m) sin(——)
then ,
VBp + q) = 20Gc(q,m)cos((2m + 1)(g +

7
16).7/64 + p(2m + 1)7/8) — > Gs(g,m)sin((2m +
m=0
1)(q + 16).7/64 + p(2m + 1)7/8)

Note that, the transform in (3) is a nonstandard dis-
crete cosine and sine transforms. They are similar to
type-I 4-point DCT and DST [5], but the numerator in
this type is “N — 1” (i.e., 3) rather than N (i.e., 4) as
in (3).

Similarly the two cosine and sine terms in the above
relation can be simplified further using basic tringono-
metric relations. Then define,

Gee(q,m) = Ge(q,m) cos((2m + 1)(q + 16)7/64)
Gos(q,m) = Go(q, m) sin((2m + 1)(q + 16)7/64)
Goe(q,m) = Gs(gq,m) cos((2m + 1)(q + 16)7/64)

Gss(q,m) = Gs(g,m)sin((2m + 1)(g + 16)7/64) (4)

with ¢ and m =0 to 7.
Finally, we have,

V(p,q):mi::O(Gcc(q7 m)—Gss(q,m)) cos(p(2m~+1)m/8)

= Y (Geslg.m) + Goolg,m)) sin(p(2m + D)7 /8) - (5)

Note, these are again nonstandard DCT and DST
transforms although they are similar to Type-II DCT
and DST [5]. However, in type-IIl DCT and DST the
denominator is 2N (i.e., 16) rather than N.

The proposed algorithm is summarized in (3), (4),
and (5) and it is illustrated in figure 2.

3.2. Memory Requirements

For the proposed algorithm we will need the following
constant memory storage:

1. {cos(lgn /1), sin(lqm/4) }1=0:3,q=0:7 , 1.€., it requires
64 words for direct implementation. However, if
symmetry is exploited then the total requirement
becomes only 32 words.

V - 246

32 subband samples

| S
4-point DET d-point DCT
|
Glem | Y L G
Poird by point Poird by point
multiplication with multiplication with
an((Zm+110g+H 6. 6. cog(Z2m+1(g+ &), mEd.

B-point DET

B-point DCT

Vip.g)

Fig. 2. DCT Matrixing Scheme

2. {cos((2m + 1)(q + 16)7/64),sin((2m + 1)(q +
16)7/64)}, with m and ¢ =0 to 7, i.e., it requires
128 words.

3. {cos(p(2m + 1)7/8), sin(p(2m + 1)7/8)}, with m
and p = 0to 7, i.e., it requires 128 words. However,
if redundancy is exploited, then the total memory
requirement becomes 64 words.

Therefore, the constant memory requirement of the
proposed algorithm is 224 words. Also, we need an ex-
tra 64 words for storing G.(¢,m) and Gs(g,m) simul-
tenously. Hence, the total requirement is 296 words.
The memory requirement in the MPEG recommenda-
tion is 1088 words, i.e., we have a saving factor of 3.68.
Further reduction in the requirements is described in
section 4.

3.3. Computation Requirements

In this subsection, we calculate the computational load
of the direct implementation that does not exploit the
structure of the transforms in (3) and (5). In the next
section we will exploit the structure of the transforms to
significantly minimize the computational requirements.

The computational requirements for each step of the
algorithm are as follow:

1. Go(g,m) and Gs(gq,m) computations require 4
MACSs per element in a total of 512 MACs. How-
ever, both transforms are symmetric. Therefore,
it can be reduced to only 256 MACs.

2. The computation of (G.. — Gss) and (G5 + Gs.)
require in general 256 MACs.

3. The final step (5) will require 1024 MACs by direct
calculation. However, only 512 MACs are needed
if the symmetry is exploited.

Hence we have a total of 1024 MACs for the direct
implementation of the new algorithm which is the same
as the computational requirement of the MPEG stan-
dard recommendation [4].

3.4. Comments

The proposed algorithm has another advantage for
fixed-point implementation which is usually used in real
time signal processing. As discussed in [6], the variance
of the quantization error is linear with the summation
order. This order equals 32 in the standard MPEG rep-
resentation, whereas it is only 13 for the proposed al-
gorithm, i.e., the quantization error is reduced by 60%,
which is significant in low-precision implementation.

Note that, the 8-point DCT can be reduced further
to two stages of 4-point and 2-point DCT and DST.
However, the saving in the computation does not justify
the increase in the complexity and code size.

It should be mentioned that the proposed algorithm
does not change the polyphase reperesentation of the
baseband prototype filter. It follows the proposed im-
plementation in the standard.

4. EFFICIENT IMPLEMENTATION

A closer look at the nonstandard transforms in (3) and
(5) reveals some useful features that considerably sim-
plify the computational and memory requirements. We
will discuss in detail the first transform, then the others
are very similar.

1. {cos(lgm/4)}i=0:3 q=0.7: all the nonzero compo-
nents in the base vectors are either 41, or :I:%.
The transform matrix has the structure:

V -247

1 1 1 1
1 —1
1L 0
1 0 -1 0
—1 1
1= 0 %
1 -1 1 -1
—1 1
1= 0 I
1 0 -1 0
1 —1
1 0

if multiplication by % is delayed after
adding/subtracting the corresponding com-
ponents, it is straightforward to verify that the
total computational requirements for each column
in G.(g,m) is 11 additions and 2 multiplications.
Hence, the total computational requirement for
G.(¢,m) with ¢ and m = 0 to 7, is 88 addi-
tions and 16 multiplications. The optimized
implementation is illustrated in figure 3.

S(O,m) Gc(m, 0)
S(1,m) G (m,1)
S(2,m) G .(m2)
SG3.m) G.(m3)
G.(m4)

Note: G (m,5) =G (m,3), G (m,6)= G (m,2), and G (m,7)= G (m,1)

=112

Fig. 3. Recommended Implementation for G.(q,m)

2. {sin(lgm/4) }i=0.3,q=0.7: This matrix can be opti-
mized significantly be removing the zero rows. The
nonzero components in the matrix are either £1,

or :I:%. It is straightforward to show that, the

total computational requirement for Gs(q,m) is
56 additions, and 8 multiplications (where we as-
sumed that sign inversion is equivalent to one ad-
dition).

3. The calculations of G..,G.s,Gss.and G, are not
easy to optimize. It requires, in general, 256 addi-
tions and 256 multiplications.

4. {cos(p(2m~+1)7/8)}p=0.7 m=0.7: The only nonzero
values in the matrix are: :I:l,:l:%7 tcos(%), and

:I:cos(%”), and it is anti-symmetric around the

middle row. Therefore, the total computational
requirement for the transform is 248 additions and
40 multiplications.

5. {sin(p(2m + 1)7/8) } p=0.7,m=0:7: The structure is
very similar to the above case, however, it is sym-
metric. Therefore, the total computational re-
quirement is 224 additions and 40 multiplications.

In the following table, we compare the performance
of the proposed implementation with the standard
MPEG recommendation (when the redundancy in the
standard is exploited).

Standard MPEG | Proposed Algorithm
Multiplications 1088 360
Additions 1088 872
Memory 1088 296

Table 1. Comparison with MPEG Standard Recommendation

5. CONCLUSION

In this paper, we described a new structure for DCT
matrixing in the MPEG-1 audio decoder. The struc-
ture is based on factorizing the DCT matrix to smaller
size matrices in a way similar to FFT factorization.
This factorization results in a memory saving factor of
about 3.7. Moreover, with the efficient implementation
described in the paper, the total computation was re-
duced considerably. Also, the proposed algorithm sig-
nificantly reduces the quantization error in fixed-point
implementation which is a critical issue in limited pre-
cision implementations.

6. REFERENCES

[1] P. Vaidyanthan, “ Multirate Systems and Filter
Banks”, Prentice Hall, 1993.

[2] D. Chan, J. Yang, and C. Fang, “ Fast Imple-
mentation of MPEG Audio Coder using Recursive
Formula with Fast Discrete Cosine Transforms”,
IEEE Trans. on Speech and Audio, Vol. 4, No. 2,
pp. 144-148, March 1996.

[3] K. Konstantinides, “ Fasl Subband Filtering in
MPEG Audio Coding”, IEEE Signal Processing
Letters, Vol. 1, No. 2, pp. 26-28, February 1994.

[4] ISO/IEC International Standard 11172-3, “ Infor-
mation Technology- Coding of Moving Pictures
and Associated Audio for Digital Storage Media
at up to about 1.5 Mbits/s- Part 3: Audio”

[5] G. Strang, “ The Discrete Cosine Transform”,
SIAM Review, No. 41, pp. 135-147, 1999.

[6] J. Proakis, and D. Manokalis, “Digital Signal Pro-
cessin: Principles, Algorithms, and Applications”,
chapter 7, 3rd edition, Prentice Hall, 1996.

V - 248

Il 2

