
SYSTEMATIC EXPLOITATION OF DATA PARALLELISM IN
HARDWARE SYNTHESIS OF DSP APPLICATIONS1

Mainak Sen and Shuvra S. Bhattacharyya

{mainak,ssb}@eng.umd.edu
Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies,

University of Maryland, College Park, 20742, USA.

ABSTRACT

In this paper, we describe an approach that we explored
for low-power synthesis and optimization of digital signal, image,
and video processing (DSP) applications. In particular, we con-
sider the systematic exploitation of data parallelism across the
operations of an application dataflow graph when synthesizing a
dedicated hardware implementation. Data parallelism occurs com-
monly in DSP applications, and provides flexible opportunities to
increase throughput or lower power consumption. Exploiting this
parallelism in dedicated hardware implementation comes at the
expense of increased resource requirements, which must be bal-
anced carefully when applying the technique in a design tool. We
propose a high level synthesis algorithm to determine the data par-
allelism factor for each computation, and based on the area and
performance trade-off curve, design an efficient hardware repre-
sentation of the dataflow graph. For performance estimation, our
approach uses a cyclostatic dataflow intermediate representation
of the hardware structure under synthesis. We then apply an auto-
matic hardware generation framework to build the actual circuit.

1. MOTIVATION

High-level synthesis has been of primary importance in
the field of DSP as area and power considerations are critical in
the DSP domain. Design space exploration can be done effectively
from a high level description as some inherent traits are more
obvious in the high level abstraction and become obscure in the
low level implementations. Dataflow has proven to be an attrac-
tive high-level computation model for programming DSP applica-
tions. A restricted version of dataflow, termed synchronous
dataflow (SDF), that offers strong compile-time predictability
properties, has been studied extensively in the DSP context [1][6].
We have developed an algorithm and Verilog code generation
framework for optimal application of data-parallel hardware
implementations to SDF graphs. Further, since ,
where is the operating voltage and is the operating frequency,
we can reduce both and , thus trade performance for lower
dynamic power consumption. As an example, we consider a sim-
ple 3-tap FIR filter. Figure 1 shows a synchronous dataflow graph
representation of such a filter.

Here, the inputs to each module consume one unit of data
upon each invocation, and the modules produce one unit of data at
the output. From this SDF graph representation of the filter, we
can clearly see that data parallelism through replication of hard-
ware blocks can be used for each of the modules to increase the
throughput. The given dataflow graph provides enough informa-
tion to derive a hardware implementation of the filter. But by ana-
lyzing the given dataflow, we can increase the throughput of the
circuit by duplicating the multipliers and creating parallel datap-
aths to them. Figure 2 shows the 3-tap FIR filter of Figure 1 with

data-parallel factors of and for the multipliers
and the adders respectively. The additional switches needed for
sending data to multiple instances of the modules are also shown.
This possibility of configuring a data-parallel hardware implemen-
tation results in a wide design space to probe around in order to
maximize throughput or minimize power consumption.

The rest of this paper is structured as follows. In Section 2
we present the formal problem statement as well as the optimality
of the solution provided by the algorithm proposed. Section 3 pro-
vides the framework used for automatic hardware code generation
from the optimally configured circuit given by our algorithm. Sec-
tion 4 provides results for some typical DSP subsystems and
implications of those results. Section 5 draws a conclusion of our
work and provides some useful directions for further exploration.

2. PROBLEM STATEMENT AND
SYNTHESIS ALGORITHM

In this section we present the formal statement of the
synthesis problem that we address, and present the algorithm
developed to solve it. We also show that the algorithm has polyno-
mial complexity and provides optimal synthesis results.

2.1 Problem statement
In this model, each functional module (dataflow

graph vertex) that has a data-parallel implementation is character-
ized by an overhead factor, denoted , which approximates the
amount of additional functional resource area (or cost) required for
each level of data-parallel implementation. Specifically, an -
level data-parallel implementation of (an implementation with
m parallel copies of the hardware block) is modeled as requiring a
functional resource cost of

, (1)

where is the cost of a single instance of module (without
application of the data parallelism transformation). Similarly, a

1. This research was supported by the Advanced Sensors Collaborative Technology Alliance.

power V
2
f∝

V f
V f

Z-1

h(0) h(1) h(2)

Z-1

Σ Σ

X(T)

Y(T)

Figure 1. An SDF graph representation of a 3-tap FIR
filter with production and consumption rates uniformly
equal to one.

2 2 3, ,〈 〉 1 1,〈 〉

M

vM

m
M

AM m 1–()vMAM+ AM 1 m 1–()vM+()=

AM M

V - 2290-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

module-independent area or cost switching overhead is used to
model the switching area or communication cost required for the
connection between an incoming (outgoing) data stream and an

-way parallel network of hardware modules operating at
times the data rate of the stream. Under this formulation, the

data parallelism synthesis problem becomes one of determining a
strategic mapping : +, where denotes the set of appli-
cation modules (dataflow graph vertices), + denotes the set of
positive integers, and denotes the data parallelism imple-
mentation level (the number of parallel instantiations) of module

. So, we are concerned with the constraints of area (cost), power
consumption, and throughput, and the objective of data parallelism
synthesis is to achieve an optimal or near-optimal configuration
that targets the relevant constraints and optimization criteria across
these metrics.

2.2 Proposed Algorithmic Solution
The algorithm follows a greedy approach. At every iteration,

it checks for the module which when duplicated gives the maxi-
mum performance benefit. The algorithm terminates when dupli-
cating any hardware module violates the area constraint.

Performance benefit is measured by the function ‘Perfor-
mance Analysis’ in Figure 3. The switching characteristics of any
circuit is very aptly represented by the dataflow computational
model known as Cyclo-static dataflow(CSDF) [2]. In this model, a
module can have different phases in which it can consume and
produce data at different rates. The initial dataflow along with the
data-parallel factors and switches can now be effectively repre-
sented by an equivalent CSDF graph. Performance of the resulting
dataflow graph is measured by its throughput. This is done by first
forming the equivalent Homogeneous SDF (HSDF) graph of the
CSDF graph [2]. An HSDF graph is an SDF graph whose data pro-
duction and consumption rates per firing are uniformly equal to
one. Every module in the CSDF graph forms a cycle in which
the different elements in one cycle corresponds to different phases
of the CSDF graph in its most simplified form. Let be the
execution time of each of the modules in one such cycle . Then

 is the total weight of the cycle . The mean cycle
weight of cycle in an HSDF graph is defined as

. (2)

[7] where is the total number of delay elements in .
The cycle with the maximum mean cycle weight is called the criti-
cal cycle; it gives the maximum achievable throughput for the
graph.

Let be the execution time for a module and let
the data-parallel factor for this module be . Then the throughput

for module is . The throughput of the entire sys-
tem is thus over all . Also let be the base area of .
Our objective is to maximize subject to the constraint

 where is the maximum die-area on the
chip available for hardware implementation. is approxi-
mately if the overhead for multiple hardware units is negligi-
ble.

In the greedy approach taken, we repeatedly select the
bottleneck module and increase its data-parallel factor by one,
provided area constraint is not violated. In effect, we expand the
module just enough so that it is no longer the bottleneck for the
system. This greedy procedure results in optimal configurations;
this can be seen from the following argument. If a module that is
the bottleneck has a current data-parallel factor , and only a
data-parallel factor of or more will remove it from being the
bottleneck, then the algorithm will always choose for the next

 iterations (provided there is enough area). In other words,
the algorithm always devotes available area toward improving the
bottleneck module, which is the best that can be done under a
given area constraint. Improving the performance of any non-bot-
tleneck task cannot improve the overall throughput. The maximum
number of times a module is visited by the algorithm is

 which is polynomial in the number of modules. Thus
the overall complexity of the algorithm is polynomial.

3. AUTOMATIC VERILOG CODE GENERATION
After the synthesis algorithm provides the data-parallel

factor vector, we simulate the actual hardware. For that we have
developed an automatic Verilog code generation framework that is
built on top of Ptolemy II [4], a design environment for modeling
and design of heterogeneous embedded systems.

m
m

µ V Z→ V
Z

µ M()

M

µ

Z-1

h(0) h(1) h(2)

Z-1X(T)

h(0) h(1) h(2) h(2)

Σ Σ
Y T()

Figure 2. The 3-tap FIR filter shown in Figure 1 with different
data-parallel factors for the different multipliers and adders.
Datapaths and their implementation with switches are shown.

C

W vi()
Cj

ΣW vi() Cj
Cj

ΣW Cj()() Delay Cj()()⁄
Delay Cj() Cj

Ti i
Ni

Data Structures Used:
list = queue of structures;
newlist = queue of structures;
structures = struct {
module_info;
number_of_copies_of_the_module;
}

Main algorithm:-
Form the newlist by enqueueing all the modules;
while(newlist_not_empty) {

list = newlist;
while(list_not_empty) {

Modulei = dequeue from the list;
m = (Modulei —>copies) ++;
Anew = vi Ai + Areaold;

if (Anew < Area available) {
Performance Analysis(Modulei);

}
}

get the module with **best** result;
(Modulei —>copies) ++ in newlist;

}

Performance Analysis:-
Form the corresponding Cyclostatic Dataflow(CSDF);
CSDF to Homogeneous Synchronous Dataflow(HSDF);
Maximum Cycle Mean (MCM) Analysis;
Store the result;
Enqueue_newlist(Modulei, copies);

Figure 3. The algorithm used to get the data-parallel factors for
each module.

i Ni Ti⁄() Pi=
Min Pi() i Bi i

Min Pi()
Σf Ni Bi,() A≤

max
Amax

f Ni Bi,()
NiBi

i

i

i
pi

pi k+
i

k 1–()

i
Amax() Bi⁄

V - 230

➡ ➡

3.1 Motivation for code generation
 To measure the effectiveness of our algorithm, we have

performed area and power calculations on a number of circuits,
which are presented in the results section. We synthesized the data-
flow graphs in hardware to verify our results from the algorithm.
Thus our results are backed by hardware synthesis rather than soft-
ware simulation.

3.2 Code generation methodologies
We have explored two different approaches for code

generation. We either describe the Verilog code for a module as a
congregation of functions it performs or we have a standard code
library that implements the basic structure for that module. The
only difference is in the granularity in which we confront the code
generation problem.

The two different approaches were considered based upon
flexibility and speed for code generation. If the user needs more
customized code generation, then the functional description
approach is more suited to his needs. But the user should have a
sound knowledge on synthesizable code generation for the gener-
ated code to work correctly. As for code generation from the stan-
dard library, the user need not know the intricacies of code
generation. A basic parameterized framework for a particular
module is already provided in the library, the user needs to invoke
it with the required parameters, one of them being the number of
inputs to the module. For example, an adder can be a two bit adder,
or any -bit adder and this parameter needs to be specified at the
time of invocation. This is a very reasonable approach for code
generation, and also we can generate area optimized code that is
suitable for low power applications as the library modules are opti-
mized. Overall, the library approach is easier and usually produces
better code. We discuss this approach in more detail in the follow-
ing section.

3.3 Library approach to code generation
From the input SDF graph, we extract all the modules

needed for code generation. The only way to have a one-to-one
correspondence between the module and the correct code from the
library is to use a uniform nomenclature. For this purpose, we have
used the intuitive names such as adder, delay, multiplier, etc. for
the corresponding modules. After the modules are identified, we
import the module definition from the library. The different mod-
ules are wired after the wiring pattern is extracted from the input
SDF graph. Evidently, the wires are the edges in the graph. If the
data-parallel factor for a particular module is , then the code for
it is defined only once but instantiated times. We add a switch to
manage the data parallelization for the instantiations.The gener-
ated code for the above mentioned 3-tap FIR is given in Figure 4.
The adder module is the only complete module.The input, output
and reg statements are omitted from the other module definitions
for brevity.

The code generated is divided into synthesizable and verifi-
able parts. This feature is maintained by using the testbench
approach for Verilog code generation. We generate two separate
files, one file contains code for the system being designed, and the
other contains the test generator and the monitor. As a result, the
first file contains the synthesizable part and the second file con-
tains wires to input and output modules needed for verification of
the circuit. This approach is described in detail in [8]. Figure 4
shows only the synthesizable code for a 3-tap filter.

We also generate the code for a switch when we simulate the
hardware for the graph shown in Figure 2. A simple switch
generated by our code generator is shown in Figure 5.

n

n
n
n

1 2→

module adder(in1, in2, in3, out, clk);
 input [15:0] in1;
 input [15:0] in2;
 input [15:0] in3;
 input clk;
 output [15:0] out;
 reg [15:0] out;

always @(posedge clk) begin
 out <= in1 + in2 + in3;

end

endmodule

module multiplier(in1, in2, out, clk);
always @(posedge clk) begin

 out <= in1 * in2;
end

endmodule

module delay(in1, out, reset, clk);
always @(clk or reset) begin
if (reset == 1) begin

 out <= 0;
end
else if (clk == 1) begin

 out <= in1;
end

 end
endmodule

module top(in, clk, reset, out);
assign param0 = ‘h0;
assign param1 = ‘h1;
assign param2 = ‘h2;

adder a(w2, w4, w6, out, clk);
multiplier m1(in, param0, w2, clk);
multiplier m2(w3, param1, w4, clk);
multiplier m3(w5, param2, w6, clk);
delay d1(in, w3, reset, clk);
delay d2(w3, w5, reset, clk);

endmodule

Figure 4. Generated synthesizable Verilog code for the 3-tap
FIR filter described in Figure 1.

module switch(in1, datainready1, in2,
datainready2, reset, clk, dataoutready, out);

always @(posedge clk) begin
if (reset == 1) begin

counter <= 0;
datainready1 <= 0;
datainready2 <= 0;
dataoutready <= 0;
end

else if(counter == 0) begin
counter <= counter + 1;
out <= in1;
dataoutready <= 0;
datainready1 <= 1;
datainready2 <= 0;
end

else if(counter == 1) begin
counter <= counter + 1;
out <= in2;
dataoutready <= 1;
datainready2 <= 1;
datainready1 <= 0;
end

end
endmodule

Figure 5. The example Verilog code of a simple switch.1 2→

V - 231

➡ ➡

4. RESULTS

We evaluated our algorithm on a number of typical DSP
subsystems. We present the results of three such subsystems. The
first one is a cascade of a simple adder (input node) and multiplier
(output node). Simulation results from Synopsys Design Compiler
[10] are shown in Table 1. The second circuit is a 3-tap FIR circuit
shown in Figure 1. Third is a second order IIR filter. We observe
that the data-parallel factors provided by our synthesis algorithm
are supported by the data values produced by Design Compiler.

The library used for synthesis is for CMOS logic pro-
cess. For the first circuit, our algorithm suggested

. The synthesized circuit gives maximum
throughput for the same configuration under an area constraint of
60000 . For the 3-tap FIR filter, the best performance is pro-
vided by , which tallies with

the output of our algorithm when . The sec-
ond row of Table 2 shows that even though the multiplier is the
bottleneck, providing only one parallel datapath to one of the mul-
tipliers does not decrease the critical path time, and accordingly,
our algorithm does not choose this as an improved configuration.
Even though the results shown here are for moderate-sized graphs
with numbers of modules on the order of tens, the core algorithm
is of low polynomial complexity, and therefore our approach can
be expected to scale efficiently to larger systems.

5. CONCLUSION

The above tables show some of the possible configura-
tions of the mentioned dataflow graphs that do not violate the
given area constraints. It can be observed that in all of the above
cases, the data-parallel configuration suggested by our synthesis
algorithm was the solution with the best performance.

Data parallelism for DSP hardware implementation is a
well-known concept [9]; the contribution of our paper is in the full
vertical integration of data-parallelism-based transformations with
synchronous dataflow graph analysis, cyclostatic dataflow-based
performance analysis, synthesizable Verilog code generation, and
hardware synthesis using the Synopsys Design Compiler. This
integration provides a fully automated design flow that produces
optimal exploitation of data parallelism for SDF-based designs.

Useful directions for further work include hardware synthe-
sis from more general dataflow models, such as integer-controlled
dataflow [3], and well-behaved dataflow [5]; and systematic inte-
gration with other flowgraph transformations for multi-objective
synthesis.

6. REFERENCES
[1] S. S. Bhattacharyya, P. K. Murthy and E. A. Lee. Software
Synthesis from Dataflow Graphs. Kluwer Academic Publishers,
1996.
[2] G Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete.
Cyclo-Static Dataflow. IEEE Transactions on Signal Processing.
Vol 44, No 2, February 1996.
[3] J. T. Buck. Static scheduling and code generation from
dynamic dataflow graphs with integer-valued control systems. In
Proceedings of the IEEE Asilomar Conference on Signals, Sys-
tems, and Computers, pages 508-513, October 1994
[4] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.
Neuendorffer, S. Sachs, and Y. Xiong. Taming heterogeneity - the
ptolemy approach. Proceedings of the IEEE, January 2003.
[5] G. R. Gao, R. Govindarajan, and P. Panangaden. Well-behaved
programs for DSP computation. In Proceedings of the Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
March 1992.
[6] E. Lee and D. Messerschmitt. Synchronous Data Flow. Pro-
ceedings of the IEEE, pages 55–64, September 1987.
[7] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors:
Scheduling and Synchronization, Marcel Dekker Inc. 2000.
[8] .D. E. Thomas, P. Moorby. The Verilog Hardware Description
Language. Kluwer Academic Publisher, Nowell Massachusetts
1991.
[9] M. Williamson. Synthesis of parallel Hardware Implementa-
tions from Synchronous Dataflow Graph Specifications. PhD the-
sis, Department of EECS, University of California at Berkeley,
May 1998.
[10] Synopsys Design Compiler User Manual, Synopsys.

Table 1. Results of adder multiplier circuit from Synopsys

Config
Area

()
Dynamic

Power(mW)
Critical

Time(ns)

27394 1.52 10.31

33269 1.71 9.51

51903 2.83 5.93

Table 2. Results of 3-tap FIR filter from Synopsys

Config
Area

()
Dynamic

Power(mW)
Critical

Time(ns)

68632 3.89 10.68

88266 4.62 10.68

126634 6.08 5.88

Table 3. Results of a second order IIR filter from Synopsys

Config
Area

()

Dynamic
Power
(mW)

Critical
Time
(ns)

134812 1.9 7.63

259309 3.5 4.09

µcm
2

M 1〈 〉=
A 1〈 〉=

M 1〈 〉=
A 2〈 〉=

M 2〈 〉=
A 1〈 〉=

µcm
2

M1 2 3, , 1 1 1, ,〈 〉=

A1 2, 1 1,〈 〉=

M1 2 3, , 1 2 1, ,〈 〉=

A1 2, 1 1,〈 〉=

M1 2 3, , 2 2 2, ,〈 〉=

A1 2, 1 1,〈 〉=

µcm
2

M1 2 3 4, , , 1 1 1 1, , ,〈 〉=

A1 1〈 〉=

M1 2 3 4, , , 2 2 2 2, , ,〈 〉=

A1 1〈 〉=

0.25µ

M 2〈 〉 A, 1〈 〉= =

µcm
2

M1 2 3, , 2 2 2, ,〈 〉= A1 2, 1 1,〈 〉=

Amax 130000µcm
2

=

V - 232

➡ ➠

