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ABSTRACT

The computation of linear DSP transforms consists entirely of ad-
ditions and multiplications by constants, which, in a hardware re-
alization, can be implemented as a network of wired shifts and
additions. Thus, a light weight fixed point implementation that ap-
proximates an exact transform can be built from only adders. This
paper presents an automatic approach for minimizing the number
of additions required for a given transform under the constraint
of a particular quality measure. We present an evaluation of our
approach. For example, one experiment shows that the IMDCT
transform within an MP3 decoder can be reduced from 572 ad-
ditions to 260 additions while maintaining Limited Accuracy as
defined by the MP3 ISO standard.

1. INTRODUCTION

Discrete signal transforms are key components in virtually every
digital signal processing (DSP) application and require efficient
implementations in software and in hardware. Mathematically, a
transform is composed of additions and multiplications by con-
stants; the particular data flow depends on the chosen fast algo-
rithm for this transform. When implemented in hardware, the
multiplications by constants are often implemented by a sequence
of additions and shifts which is less expensive in terms of chip
area and power consumption. These implementations of trans-
forms are referred to as multiplierless and confront the designer
with two major problems: 1) the choice of a numerically robust al-
gorithm for the transform to ensure the best possible quality when
implemented in finite precision; and 2) the large space of different
trade-offs between implementation cost, i.e., the total number of
additions required, and the output quality, both of which are deter-
mined by the particular choice of precisions for the occurring con-
stants. We note that these precisions can be chosen independently
for each constant, which leads to a large space of possible alter-
natives. For example, [1] explores these trade-offs for the DCT of
type II and size 8 using coding gain as quality measure.

Automatic custom cost minimization. We present an entirely
automatic method to minimize the cost of a multiplierless trans-
form implementation (measured by the number of additions re-
quired) while satisfying an arbitrarily given quality constraint. Our
approach consists of the following three high-level steps: 1) For
the given transform we generate a numerically robust algorithm
represented as a sparse matrix factorization in a symbolical math-
ematical notation. 2) We formally manipulate the algorithm to
increase its robustness to finite precision approximation. 3) We
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search in the space of all possible independent constant precisions
for this algorithm for the solution that produces the lowest imple-
mentation cost while still satisfying the given quality constraint.
The size of the search space is determined by the number of con-
stants in the algorithm and the maximum precision considered.

This approach combines ideas from [1] and the SPIRAL code
generation system [2, 3] but generalizes [1] to be automatic and ap-
plicable for all transforms and quality measures. We implemented
the optimization procedure as part of SPIRAL.

Paper Organization. In Section 2 we present the mathemati-
cal framework we use to generate, represent, and manipulate trans-
form algorithms. Section 3 explains how to obtain a low cost im-
plementation of a constant multiplication. Possible quality mea-
sures for transforms are discussed in Section 4. The different
search strategies to find the best approximation in the large space
of alternatives are introduced in Section 5. We conclude with var-
ious experimental results in Section 6, which show the success of
our approach and the large cost savings possible when custom op-
timizing a transform. For example, we show that we can reduce
the cost of the IMDCT within an MP3 decoder from 572 to 260
additions while still maintaining Limited Accuracy as defined by
the MP3 ISO standard [4].

2. DSP TRANSFORM ALGORITHMS

In this section we present the framework that we use to generate,
represent, and manipulate fast transform algorithms to improve
their numerical robustness. For further details we refer to [2, 3].

Transforms and algorithms. A (discrete, linear) transform is
a class of matrices parameterized by their size. In this paper we
consider the n × n discrete cosine transforms of type II (DCT(II)

n )
and type IV (DCT(IV)

n ) and the 2n × n inverse modified discrete
cosine transform (IMDCTn). They are defined (without normal-
izing factors), respectively, by

DCT(II)
n =

[
cos

k(2� + 1)π

2n

]
0≤k,�<n

,

DCT(IV)
n =

[
cos

(2k + 1)(2� + 1)π

4n

]
0≤k,�<n

,

IMDCTn =
[
cos

(2k + 1)(2� + 1 + n)

4n

]
0≤k<2n,0≤�<n

.

A rule decomposes a transform into a product of structured sparse
matrices containing smaller transforms. Examples of rules for the
above transforms include

DCT(II)
n = Pn · (DCT(II)

n/2 ⊕(DCT(IV)
n/2)

P ′
n) · (1n/2 ⊗ F2)

P ′′
n ,

IMDCTn = Sn · DCT(IV)
n ,

DCT(IV)
n = Tn · DCT(II)

n ·Dn,
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and many others. The symbols Pn, P ′
n, P ′′

n denote permutation
matrices, Dn a diagonal matrix, Sn, Tn certain sparse matrices,
F2 =

[
1 1
1 −1

]
, and 1n the n×n identity matrix. The exact form is

not given due to lack of space. Further, ⊕ denotes the direct sum
and ⊗ the tensor or Kronecker product of matrices, defined by

A ⊕ B =

[
A

B

]
, A ⊗ B = [ak,� · B], A = [ak,�].

Recursive application of rules until all occurring transforms are
fully expanded yields a formula that represents an algorithm for
the original transform. An example of a formula is

DCT(II)
8 =

[(2, 5)(4, 7)(6, 8), 8] · (diag(1, 1√
2
) ⊕ R 3

8 π ⊕R 15
16 π ⊕R 21

16 π)

·[(2, 4, 7, 3, 8), 8] · ((DFT2 ⊗13) ⊕ 12) · (14 ⊕ R 3
4 π ⊕12)

·[(2, 3, 4, 5, 8, 6, 7), 8] · (12 ⊗ ((DFT2 ⊕12)
·[(2, 3), 4] · (12 ⊗ DFT2))) · [(1, 8, 6, 2)(3, 4, 5, 7), 8],

which represents Chen’s DCT algorithm [5]. We used the follow-
ing additional notation: [σ, n] is an n × n permutation matrix for
the permutation σ given in cycle notation, e.g., σ = (1, 3, 2) sig-
nifies the mapping 1 → 3 → 2 → 1; diag(a1, . . . , an) represents
a diagonal matrix with diagonal a1 . . . , an; and

Rα =

[
cos α sin α

− sin α cos α

]

is a rotation matrix for angle α.
SPIRAL. The above framework is the foundation for the code

generation system SPIRAL [2, 3]. For a given transform, SPI-
RAL generates one out of many possible formulas (arising from
different choices of rules upon expansion), translates it into code,
measures its runtime, and, in a feedback loop, triggers the gener-
ation of different formulas, thus searching for the best match be-
tween algorithm and target platform. SPIRAL provides us with the
infrastructure to generate algorithms of a desired structure, to for-
mally manipulate them, to translate them into code, and to evaluate
their quality, e.g., in the context of an application.

Numerical robustness and lifting steps. In a multiplierless
implementation of a transform, every constant multiplication in
the chosen algorithm is replaced by a fixed point approximation.
Thus it is important to choose a numerically robust algorithm for
implementation. We ensure robustness by 1) generating for the
given transform an algorithm based on rotations (as in Chen’s DCT
algorithm above); and 2) expanding the rotations into lifting steps
as explained below.

A lifting step is a 2 × 2 matrix of the form[
1 a
0 1

]
or

[
1 0
a 1

]
.

Lifting steps have the following properties which make them a de-
sirable algorithmic structure for fixed point implementations. 1) A
lifting step is invertible, independent of the contained constant; the
inverse is again a lifting step, namely[

1 a
0 1

]−1

=

[
1 −a
0 1

]
,

[
1 0
a 1

]−1

=

[
1 0
−a 1

]
. (1)

2) Moreover, if the constant a in a lifting step is approximated to
require few additions, then so does −a in the inverse.

Lifting steps can be obtained from rotations via the identity

Rα =

[
1 u
0 1

] [
1 0
v 1

] [
1 u
0 1

]
, (2)

where u = tan(α/2) and v = − sin α. We analyze (2) for ro-
bustness with respect to approximation of the occurring constants.
Assume we replace the first occurrence of u in (2) by ũ = u + ε.
Elementary calculation shows that for the obtained matrix R̃α,

R̃α = Rα +

[−ε sin α ε cos α
0 0

]
,

i.e., the error is not magnified. A similar observation holds for the
second occurrence of u in (2). Replacing v by ṽ = v + ε gives a
very different result, namely

R̃α = Rα +

[
ε tan(α/2) ε tan2(α/2)

ε ε tan(α/2)

]
,

i.e., the error magnifies if | tan(α/2)| > 1 or α ∈ [π/2, 3π/2].
These angles can be avoided in an algorithm at no arithmetic cost
by the manipulation

Rα = Rα−π/2 ·Rπ/2 = Rα−π/2 ·
[

0 1
−1 0

]
.

Summary. In preparation to developing a multiplierless approx-
imation of a transform algorithm, we 1) generate an algorithm
based on rotations; 2) formally manipulate the angles to assure
α �∈ [π/2, 3π/2]; and 3) expand the rotations into lifting steps.

3. MULTIPLIERLESS IMPLEMENTATIONS

In this section we provide the necessary background for multipli-
erless implementations and, in particular, for multiplications by
fixed point constants.

Multiplierless implementation. In a multiplierless imple-
mentation of a transform algorithm, the occurring constants c are
replaced by a fixed point approximation

c ≈ k/2n,

where n denotes the number of fractional bits. The multiplica-
tion by a fixed point number c, in turn, can be implemented by
additions and shifts. For example y = 1.01 · x may become
y = x + (x � 2), costing one addition and one shift. To the first
order, the hardware cost of such an implementation is dominated
by the cost of additions, since fixed shifts are simply wiring per-
mutations in hardware. Given a transform T and an algorithm for
T , reducing the precision of the multiplicative constants in this al-
gorithm yields an approximate algorithm representing an approx-
imation T̃ of T . Our goal is to find the approximation with the
lowest cost that still satisfies a user-specified measure of quality.

Multiplication Methods. Different methods exist to realize a
multiplication by a constant using additions and shifts. We briefly
discuss two standard methods before presenting a third addition
chain method employed in our approach. For the sake of clarity,
we restrict the discussion below to multiplications by fixed point
constants between 0 and 1 with n fractional bits, which are repre-
sented as a sequence of binary digits c = 0.b1b2....bn−1bn where
bi ∈ {0, 1}. Thus, the product of c and x can be computed as

c · x =
n∑

i=1

bi2
−ix.

Hence, if the binary representation of c has k non-zero digits, the
direct method of multiplication corresponds to summing k shifted
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versions of x (i.e., 2−ix for each non-zero bi). The multiplication
cost in terms of the number of additions is k − 1.

Signed digit (SD) recoding is commonly used, in both hard-
ware and software, to reduce the number of additions required
when multiplying by a constant [6]. An SD-recoded constant is
interpreted as

c =
n∑

i=0

bi2
−i,

where bi ∈ {1, 0, 1} and 1 stands for -1. The most salient aspect of
SD recoding is in replacing a sequence of s consecutive ’1’ digits
in a normal binary representation by an SD sequence of s − 1 ’0’
digits with a prefix ’1’ and a suffix ’1’, i.e.,

...0 111...11︸ ︷︷ ︸
s

0... → ...1 000...00︸ ︷︷ ︸
s−1

10...

The above recoding implies that the s−1 additions corresponding
to the original sequence of ’1’ digits can be reduced to a single
subtraction. A well-known algorithm exists to convert a standard
binary representation into a canonical signed digit (CSD) repre-
sentation such that no two consecutive digits are non-zero (i.e.,
bibi+1 = 0). This ensures that the cost of multiplying by a n-bit
constant is less than n/2 additions/subtractions.

In our approach we invoke a method based on addition chains.
This approach differs from the above methods by potentially
reusing intermediate results of the computation, e.g., later ad-
ditions can use shifted results from earlier additions. For ex-
ample, the addition chain to multiply x by c = 10021

214 =
0.10011100100101 is

s1 = (x � 14) + (x � 12)
s2 = (x � 6) − s1

s3 = (s1 � 11) − s2

s4 = (x � 9) + s3

In this example, the addition chain method only requires 4 addi-
tions; in contrast, the direct method requires 6 additions and the
CSD method requires 5 additions.

It has been shown empirically that at most 5 additions are
needed to multiply x by any constant representable by up to 19
bits [6]. Unfortunately, finding the optimal addition chain of a
given constant has been proven to be NP-hard [7]. In our approach,
we employ an approximate algorithm based on dynamic program-
ming [8]. Out of the 219 constants representable in 19 bits, this
near-optimal algorithm only requires more than 5 additions for 225
constants and in the worst case requires 7 additions.

4. QUALITY MEASURES

When minimizing the cost of a transform algorithm via approxi-
mation, it is important that the quality of the algorithm is main-
tained. Clearly, the measure of quality and an acceptable threshold
depends on the application context and ultimately has to be chosen
by the user.

We consider two types of quality measures, which are dis-
cussed below, and introduce the measures we have used in our
experiments (presented in Section 6). As before, a transform is
denoted by T , and an approximation by T̃ .

Model based. These quality measures evaluate the quality
of an approximate transform based on a mathematical model, in-
dependent of any application context. An example is coding gain,
which assesses the compression quality of a transform with respect
to an input model and is defined as:

Cg = 10 log10

σ2
x

(
∏M−1

i=0 σ2
xi
‖fi‖2)

1
M

where M is the number of subbands, σ2
x the variance of the input,

σ2
xi

the variance of the i-th subband, and ‖fi‖2 the norm of the
i-th synthesis filter [1]. As in [1], we evaluate an approximation
of the DCT(II) assuming an AR(1) model with zero-mean and
correlation ρ = 0.95. The coding gains of the DCT(II)

8 and the 8-
point Karhunen-Loeve Transform (KLT) are 8.8259 dB and 8.8462
dB, respectively.

Application based. The most accurate but also most time-
consuming way to evaluate the quality of an approximate trans-
form T̃ is to insert T̃ into the respective application and measure
the application’s overall quality. In our experiments, we consid-
ered two applications, an MP3 decoder [9] and a JPEG decoder
[10], and their application-level quality metrics.
• The MP3 ISO standard prescribes a compliance test based on

the decompression of a reference bitstream [4]. Depending on
the root-mean-square difference between a MP3 decoder’s out-
put and the reference decoded output, a MP3 decoder is classi-
fied as Non-Compliant, Limited Accuracy (LA) or Fully Com-
pliant.

• A commonly used quality measure for JPEG compression is the
Peak Signal-to-Noise Ratio (PSNR) of a compressed and then
decompressed reference image relative to the original uncom-
pressed input image. In practice, a PSNR≥ 30 dB is considered
acceptable in many imaging applications.

5. OPTIMIZATION THROUGH SEARCH

For a given exact algorithm, there exists a variety of approximated
implementations—where the precision of the multiplicative con-
stants has been individually varied—that can be searched to find
a low-cost, high-quality trade-off. In this section, we describe
three search strategies that we implement in our automatic opti-
mization approach. Using the framework discussed thus far, we
can address two complementary optimization problems involving
cost and quality. First, for a transform T , we can minimize the
number of additions needed in an approximate implementation T̃
to satisfy a quality threshold. Conversely, given an upper bound
on the number of additions allowed, we can maximize the quality
achievable by an approximate implementation. This paper focuses
on the former problem, but our approach and conclusions can be
extended to both optimizations.

Search Space. Given an algorithm comprised of k n-bit con-
stants, there are nk possible ways to choose the individual bitwidth
of the k constants. However, not all nk configurations are mean-
ingful. Our addition chain example of multiplying x by the con-
stant 0.10011100100101 requires just four additions. For this 14-
bit constant, at most five bitwidth settings need to be considered,
namely the five most precise approximations of C corresponding
to exactly 0, 1, 2, 3 and 4 additions. Based on [6], we know that
an exhaustive search for an algorithm with 19-bit constants would
require evaluating at most 6k configurations. Unfortunately, this
means an exhaustive search is infeasible for sizes of interest. For
example, a DCT(II) of size 32 requires at least 80 multiplications.

Search Strategy. To cover the extremely large search space
efficiently, we implemented three search strategies, described be-
low in increasing order of complexity.
• Global Search. Our fastest search strategy adjusts the bit width

of all constants in a transform by the same amount. Starting
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Table 1. Transform and quality threshold considered
Experiment Transform Quality Threshold
E1 DCT-II8 Cg ≥ 8.80 dB
E2 DCT-II32 MP3, LA
E3 18x36 IMDCT MP3, LA
E4 DCT-II8 (inv only) JPEG, PSNR ≥ 30 db

Table 2. Summary of experimental results
E1 E2 E3 E4

initial (31 bits) 165 1056 572 165
global 62 420 279 26
evolutionary 38 504 317 28
greedy (top-down) 49 396 260 28

with a maximum default bit-width, the global bit-width is re-
duced until the quality threshold is violated. Hence, the quality
measure is evaluated for at most n + 1 different approximate
transforms.

• Greedy Search. A top-down greedy search begins from the
maximum bit-width configuration. In each step, the greedy
search selectively reduces the bit width of one constant by one
bit such that the quality degradation is minimized. The greedy
search terminates when the quality threshold is violated. We
did not consider a bottom-up greedy search in this paper.

• Evolutionary Search The evolutionary search strategy mimics
the natural selection process, gradually evolving the design to-
wards an optimal configuration. Each iteration of the evolution-
ary search begins with a population of configurations. A new
generation of a population is generated nondeterministically by
mutating the previous generation’s configurations (e.g., mod-
ifying the precision of one constant) and by “cross-breeding”
features of the previous generation’s configurations (e.g, ex-
changing precisions for one constant). From the so expanded
population, the highest quality configurations are selected as
the next population. The search terminates after a preset num-
ber of generations.

6. EXPERIMENTAL RESULTS

To evaluate our approach, we experimented with four different
combinations of transforms and quality measures (summarized in
Table 1). E1 attempts to minimize the number of additions re-
quired by the DCT(II)

8 , constrained by the model-based metric Cg;
E2, E3 and E4 minimize the cost of some specific transforms in an
application under the constraint of application-based overall qual-
ity metrics. For example, E4 approximates the DCT(II)

8 within the
Independent JPEG Group’s reference JPEG implementation such
that a PSNR ≥ 30 dB is achieved after compressing and decom-
pressing the Lena image.

Table 2 summarizes the results of our experiments. For each
test combination, the number of additions resulting from all three
search strategies is given. (The evolutionary search iterated for 25
generations in all cases.) The number of additions required by a
default implementation using 31-bit constants is also provided for
reference.

In all four experiments, the number of additions was signif-
icantly reduced from those required by the default 31-bit imple-
mentations. The greedy search strategy produced the best results in

the MP3 application-driven optimizations, but failed in the model-
based E1. Also notice that the simple global search strategy pro-
duced the best result for E4 and highly competitive results for E2

and E3 but not for E1.
Fig. 1 provides a closer examination of the behavior of the

evolutionary search in E1. Fig. 1 plots the number of additions
for the best configuration found in each of the first 14 generations,
after which the cost of the best configuration remained constant.
In these 14 generations, the number of additions was reduced from
165 (the default implementation) to 56 (after the first generation)
to 38, while preserving Cg ≥ 8.80.
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Fig. 1. The progress of the evolutionary algorithm during E1.
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