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ABSTRACT
In communications system design, it is frequently as-
sumed that source symbols are equiprobable. However
in real life applications this is not the case since most
sources produce Gaussian samples. In this paper, we
introduce a Karhunen Loéve Transform (KLT) based
integer to integer transform, I2I KLT, over GF (q) that
will force the symbols to uniform distribution. This
transform can be used as interface between sources with
different distributions and communication systems de-
signed according to uniform distributions.

1. INTRODUCTION

A communication system connects a source to a des-
tination through a channel. A typical communication
system is shown in Fig.1. Due to today’s increasing
data demands, this process has to be reliable, i.e. ro-
bust to any channel imperfections or source statistics,
and efficient i.e. use the least possible amount of re-
sources like power and bandwidth. These goals make
the communication system design a challenging prob-
lem.

Considering discrete sources, the majority of the
communication systems are designed according to the
uniform input distribution assumption, i.e, the prob-
abilities of discrete source outputs are constant. This
assumption is frequently used when there is no apriori
knowledge about the data, which is the case for many
source outputs.

The source distribution is important in the sense
that, in a communication system, the receiver is de-
signed according to a particular source distribution.
For example, optimum decision region in a binary sys-
tem depends on the probabilities of 1’s and 0’s. For ex-
ample the system designs proposed in [1, 2] assume that
source output symbols are equally likely. Therefore,
their designs are optimum only with these assumptions.
Furthermore, it is known that a communication system
works optimally for symmetric channels when the input
probability distributions are fixed ([3], Lemma 8).

However uniform input distribution is rarely the
case in real life. For instance, due to correlation, out-
put symbols of a digital camera most likely will not
be equally likely. Most but not all source outputs in
practice are Gaussian distributed. In this paper, we
introduce a Karhunen Loéve transform based integer
to integer transform (I2I KLT) over finite fields that
will produce uniformly distributed outputs, regardless
of the input distribution. This transform is fast and
invertible, since the operations are performed over a
finite field avoiding floating point arithmetic.

We propose to use the I2I KLT as shown in Fig.2
so that the inputs of the communication system are
uniformly distributed, and the communication system
design assumptions hold. Since this is a fast and loss-
less process, it can be added to previously designed
communication system in order to assure the uniform
distribution.

The paper is organized as follows. A brief summary
of the KLT over R and the transform coding is given
in Section 2. The proposed I2I KLT is presented in
Section 3. In Section 4, experiment results are shown.
Conclusions are given in Section 5.
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Fig. 2. A modified communication system model
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2. TRANSFORM CODING AND KARHUNEN
LOÉVE TRANSFORM OVER R

In classical communication theory, a transform coder
is used for data compression. One of the frequently
used transform coding techniques is Karhunen Loéve
Transform (KLT). In this section we summarize the
transform coding and the KLT over R.

A transform coder decomposes a signal using an
orthogonal basis and quantizes the decomposition co-
efficients. For an n dimensional signal vector xi, i =
1, 2, ..., M and a unitary transform matrix A of dimen-
sion n × n, we have the analysis equation

yi = Axi, (1)

where yi is the vector of transformed coefficients. As-
suming A = [a1, a2, ..., an], the synthesis equation that
is used to reconstruct the original signals xi is

xi = ATyi =
n∑

j=1

yi,jaj �
n∑

j=1

ŷi,jaj (2)

where yi,j , j = 1, 2, ..., n, i = 1, 2, ..., M, are the trans-
form coefficients and ŷi,j are the quantized coefficients.
This quantization process distorts the bijective relation
between xi, and yi, resulting in the quantization noise.

It is known that over R KLT minimizes the geomet-
ric mean of the variance of the transformed coefficients
[4]. If the process is Gaussian then the coefficients of
yi are Gaussian using any basis. If the process is not
Gaussian, the KLT is not necessarily the optimal trans-
form.

The transform vectors of KLT consist of the eigen-
vectors of the autocorrelation matrix. The autocorre-
lation matrix for a random process X , is a matrix R
whose (k, l)th element [R]k,l is given by

[R]k,l = E[xmxm+|k−l|], (3)

where xi is the ith sample of the random process. This
procedure is adopted to finite fields in order to obtain
a lossless transform which is termed as I2I KLT. This
transform is described with further details in the fol-
lowing section.

3. KARHUNEN LOÉVE TRANSFORM OVER
FINITE FIELDS: I2I KLT

Let us consider a field with q elements, where q is a
power of a prime p. We denote this finite field by
GF (q). Using results on linear algebra over GF (q),
we can adopt KLT over finite fields.

There are two major differences between KLT over
R and over GF (q). In KLT over R after a block of data
is transformed, it has to be quantized in order to be rep-
resented in digital sense. This introduces some noise
and distortion to the transform. However, when the
transform is from integer to integer, then this noise is
eliminated. The second difference is speed. It is known
that an integer to integer transform can reduce the re-
quired time for a particular application since floating
point arithmetics is avoided [5].

The eigenvalues of an n×n square matrix R in any
field are defined as the roots of

|λI −R| = 0. (4)

This equation leads us to the unique monic polynomial

p(λ) = λn + a1λ
n−1 + a2λ

n−2 + · · · + an−1λ + an (5)

where, eigenvalues satisfy the equality p(λ) = 0.
The most challenging problem in adopting KLT over

GF (q) is the existence of eigenvalues in higher order
extension fields. It can be shown that only some (but
few) eigenvalues are located within the considered field.
Furthermore, not all n×n matrices have n eigenvalues
due to the fact that irreducible polynomials can have
any degree, not only degree one. This leads us to the
following probabilistic analysis.

3.1. Probability Analysis

The probability that there exist n distinct roots from
a given polynomial with degree n over GF (q) can be
calculated as

P1 =
1
qn

(
q
n

)
. (6)

One can show using generating functions that the prob-
ability of having at least one root of the characteristic
polynomial in the field of interest is given by

P2 =
n∑

i=1

(−1)i+1

(
q
i

)
q−i. (7)

Moreover, the probability that a polynomial of de-
gree n, has k distinct roots, where k ≤ n, can be ob-
tained as [6]

P3 =
(

q
k

)
q−k

n−k∑
i=0

(−1)i

(
q − k

i

)
q−i. (8)

Consider GF (127) and GF (256), and let n be 8.
It can be shown that P1 = 1.98e−5, P2 = 0.6336 for
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Table 1. P3 values for GF (127) and GF (256), for n = 8

k GF (127) GF (256) k GF (127) GF (256)
1 0.369 0.368 5 2.71e−3 2.74e−3

2 0.1847 0.1843 6 6.12e−4 6.52e−4

3 0.0609 0.061 7 9.24e−6 5e−6

4 0.0152 0.0154 8 1.98e−5 2.22e−5

GF (127) and P1 = 2.22e−5, P2 = 0.6328 for GF (256).
Furthermore one can show that P2 values converge to
1− e−1 for large q. That is, 63.21% of the time we will
have at least one root for the polynomial in (5).

The probability values of P3 for both fields are tab-
ulated in Table 1. For k = n case, P1 = P3 as shown
in the table. From the values we see that, although
the probability that all roots exist is very low for both
fields, with high probability we have at least one root
existing within that field. These probabilities verify
that a fast KLT can be efficiently implemented over
GF (q).

3.2. I2I KLT

Let x = [x1,x2, · · · ,xM ] and y = [y1,y2, · · · ,yM ] be
the data and the transform matrices respectively. In-
spired from KLT, I2I KLT can be defined as

yi = A(xi −mx), (9)

where mx is the mean vector of x. However, since the
transform is over finite fields, mx is calculated over the
field of interest GF (q) as

mx = Eq [x] = M−1
M∑
i=1

xi, (10)

where M−1 represents the multiplicative inverse of M
in GF (q), and Eq [·] represents the mean calculated ac-
cording to GF (q) addition rules.

In KLT over R, the rows of the n × n transform
matrix A are the eigenvectors of the correlation matrix,
R. Similar to (10), the correlation matrix R can be
calculated over GF (q) as

R = M−1
M∑
i=1

xixT
i −mx. (11)

When working over GF (q), some eigenvalues may
be in some extension fields. It is likely that this is the
case and we have l ≤ n eigenvalues that are the roots of
polynomial in (5). The probability of this case is given
in equations (6) to (8).

Over GF (q) the roots of (5) can be evaluated using
a trial and error process known as the Chien search.
However this method only shows that for a particular
value, if the equality is satisfied, it is a root of order
at least one. This prevents us from finding the proper
order of the root unless we have exactly n distinct roots.

After obtaining the l ≤ n eigenvalues {λ1, ..., λl}
that exists within GF (q) one can find the eigenvectors
from the null-space of the matrix Mk = λk I −R. From
the dimension of the null-space of Mk , the order of the
eigenvalue as a root of (5) can be obtained. Let us
assume that from a particular R we have obtained m
distinct eigenvectors, where l ≤ m ≤ n, and let them
form the rows of the m × n matrix E.

Since with a high probability we will have m < n,
we can not implement the optimum KLT that is used
in transform coding. One suboptimal method that can
solve this problem is to place universal unit basis for
eigenvectors of the non-existent eigenvalues. That is, in
order to assure invertibility, we can form a suboptimal
transform matrix A as

A =

⎡
⎢⎢⎣

E
− − −
0 | I

⎤
⎥⎥⎦ , (12)

where I is the (n−m)× (n−m) identity matrix, and 0
is the (n−m)×m zero matrix. Using this transform if
m = n, A = E we have the optimum KLT over GF (q),
and if m = 0, we have A = I.

The original data xi can be obtained by using the
inverse transform, I2I KLT−1

x̂i = A−1yi + mx, (13)

where A−1 is evaluated such that AA−1 = I over
GF (q). Dividing A into submatrices as shown in (12),
we have the invertibility property, that is we can assure
that A−1 exists, and x̂ = x.

Another issue that needs to be checked in I2I KLT is
the independence of the variables. Assuming that the
source outputs are independent and identically distrib-
uted, uniformly distributed data can be obtained via
I2I KLT. However, the samples of the transform out-
put may not be independent. This problem can easily
be solved by using an interleaver. The size of the in-
terleaver can be very small due to the fact that only m
samples may be correlated, and n−m samples remain
independent. A small interleaver size introduce only
negligible amount of delay to the system.

4. EXPERIMENT RESULTS

In our experiments we used q-ary data points obtained
from an approximately Gaussian random process. We
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Fig. 3. Probability Distribution 2 before and after I2I
KLT GF (127)

selected the process to be bell shaped since most of the
sources produce approximately Gaussian outputs. We
transformed the random data using I2I KLT, and also
evaluated the inverse transform, I2I KLT−1 in order
to verify that there exists no quantization noise in the
transform.

For simulations we considered two bell shaped dis-
tributions in a prime field GF (127), and in an exten-
sion field GF (256). For the I2I KLT we considered
parameters as n = 8, M = 256. The original and the
transformed data probability distributions are shown
in Fig. 3 and Fig. 4 respectively. From these figures
we can see that large deviations in the distributions
are smoothened via the I2I KLT. The produced input
samples were independent, and at 5% level we do not
have enough evidence to state that the output samples
are dependent [7].
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Fig. 4. Probability Distribution before and after I2I
KLT over GF (256)

5. CONCLUSIONS

In this paper, a KLT based integer to integer trans-
form over finite fields is introduced. This transform
smoothens the probability distributions of discrete vari-
ables. It is fast and invertible, causing no data or ef-
ficiency loss. Since the transform does not depend on
the input distribution, it is very flexible in terms of
different source distributions.

Besides the application as a pre-coder suggested in
the introduction, this transform has potential appli-
cations in signal processing and communications area
that may solve system specific problems. The optimum
uncoded q-ary communication system is an example [3].
Furthermore, error correcting codes can be another po-
tential application due to the randomization achieved
via I2I KLT.
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