<

REDUCED FLOATING POINT FOR MPEG1/2 LAYER III DECODING

Mikael Olausson, Andreas Ehliar, Johan Eilert and Dake Liu

Computer Engineering, Department of Electrical Engineering
Linkopings universitet SE-581 83 Linkoping, Sweden
{mikol, ehliar, je, dake} @isy.liu.se

ABSTRACT

A new approach to decode MPEG1/2-Layer III, mp3, is presented.
Instead of converting the algorithm to fixed point we propose a 16-
bit floating point implementation. These 16 bits include 1 sign bit
and 15 bits of both mantissa and exponent. The dynamic range is
increased by using this 16-bit floating point as compared to both
24 and 32-bit fixed point. The 16-bit floating point is also suitable
for fast prototyping. Usually new algorithms are developed in 64-
bit floating point. Instead of using scaling and double precision
as in fixed point implementation we can use this 16-bit floating
point easily. In addition this format works well even for memory
compiling. The intention of this approach is a fast, simple, low
power, and low silicon area implementation for consumer products
like cellular phones and PDAs. Both listening tests and tests versus
the psychoacoustic model has been completed.

1. INTRODUCTION

Entertainment in small handheld devices like cellular phones and
PDAs are getting more and more popular. One of these extra fea-
tures is audio playback. MPEG-1/2 layer 11, often known as MP3,
is an audio coding standard that provides high audio quality at low
bit rates [1]. Since a lot of these consumer product are portable,
it is important to use low power implementations. The idea is to
use small arithmetic units and still achieve high computional dy-
namic range. The standard for MPEG includes both encoder and
decoder, but for the applications discussed here, the only inter-
esting part is the decoder. Usually the decoder is implemented
on a 24 or 32-bit fixed point processor. The bit size is chosen to
give reasonable quality in the decoded music. When using a stan-
dard 16-bit processor, i.e., a DSP, double precision must be used in
parts of the computations. Otherwise, a quality degradation can be
heard. Here we will present a new approach to a fast, simple, low
power, and low silicon area implementation using 16-bit floating
point. The target is portable devices without extreme audio quality
requirements; a cellular phone or a PDA. The headphones or the
loud speakers are usually of quite poor quality. Therefore there is
no need for high demands on the output music.

2. GENERAL DESCRIPTION OF THE MP3 FORMAT

The ISO/IEC 11172-3 and ISO/IEC 13818-3 are coding standards
that provide high quality audio at low bit rates. There are three
layers associated with the standard, layer I, Il and IIl. They of-
fer both increasing compression ratios, and increasing computing
complexity. Layer III is more known as “mp3” based on the file
extension it uses. The encoded bitrates ranges from 32 kbit/s up

0-7803-8484-9/04/$20.00 ©2004 IEEE

V-209

to 320 kbit/s. There are three main sampling frequencies associ-
ated with the standard 32, 44.1 and 48 kHz. There are also half
frequencies which are just the main frequencies divided by 2. For
a more complete description of the standard, see [1].

3. THE WORK

The work began with the reference code in C for the MPEG 2
layer III decoder. First the arithmetic instructions were exchanged
against functions calls. This made it easier to perform profiling
of the code and to elaborate with the precision and the dynamic
range. The first approach was to use one format for all calcula-
tions within the decoder. While memory sizes usually are limited
to byte lengths, we tried to use a floating point format while only
using 16 bits. One bit is allocated for the sign bit and the remain-
der is split between the mantissa and the exponent. This approach
turned out to be insufficient for the compliance testing [2]. To be
called a fully compliant audio decoder, the rms level of the differ-
ence signal between the reference decoder and the decoder under
test should be less than 275/ /12 for a sine sweep signal 20Hz -
10 kHz with an amplitude of -20 dB relative to full scale. In ad-
dition to this, the difference shall have a maximum absolute value
of no more than 27 relative to full scale. To be referred to as
a limited accuracy decoder, the rms level of the difference signal
between the reference decoder and the decoder under test should
be less than 27! /1/12 for a sine sweep signal 20Hz - 10 kHz with
an amplitude of -20 dB relative to full scale. There are no require-
ments on the maximum absolute difference. We were unable to
hear any degradation in quality when we listened to the decoded
files. The listening tests are described more in detail in section 5.
We then decided to increase the internal precision, keeping the ex-
ternal precision to 16 bits. The distinction between internal and
external precision lies in where the data is stored. While data is in
the datapath the format of the data can be higher, but as soon as it
is stored in memory it must be converted to 16 bits. Figure 1 shows
the result of the compliance test for different sizes of the internal
and external mantissa. To be fully compliant we needed a man-
tissa of 19 bits internally and 15 bits externally, alternatively 18
bits internally and 16 externally. The IEEE single precision float-
ing point format consists of a 23 bits mantissa with an imlpicit
one at the beginning. Our goal of this approach was not to aim for
full compliance, instead the intention was a descent quality for low
end equipment. Therefor, the limited accuracy test was acceptable.
According to figure 1 the demands of the mantissa is only 13 bits
internally and 9 bits externally, alternatively 12 bits internally and
10 bits externally for limited accuracy. This is a reduction of 6 bits
from the fully compliant requirements and half of the mantissa size
compared to the IEEE floating point format. The compliance test

ICASSP 2004



has been performed on fixed point arithmetic in [3]. The require-
ments from their test is a 20 bits implementation.

Compliance results depending on the precision of the floating point arithmetics

- Not compliant - Limited accuracy l:l Full precision

External mantissa size
=
T

-EREEEN
-INNENEN
-INNEEEEN
-HINERERENEN
"INNENEEEEN
-INEEENENEEN
-ANRERERERC]
-HRERERRR00]
-INEREEER 0000

°er ...

<

\,
‘
er ..

=)

12 13 14 15 16 17 18
Internal mantissa size

©
n
o

Fig. 1. Compliance test for different sizes of the internal and ex-
ternal mantissa.

While the mantissa is responsible for the precision, the expo-
nent determines the dynamic range. One of the reasons for using
this floating point approach was to avoid the problem of scaling
variables that had to be completed in integer representation. Since
we did not want variables to overflow, the upper limits of the expo-
nent was set by the dynamic range of the variables. This was done
by profiling the code and storing the maximum values of the vari-
ables. As a result, we could distinguish a difference in the upper
limit for variables in the data path and the ones stored in memory.
We needed a higher range for internal variable in the data path.

4. MOTIVATION

By using this reduced floating point representation we can achieve
a high dynamic range and a reasonable precision, with fewer bits.
We use 6 bits for the exponent in the internal representation. In
order to get the same dynamic range using fixed point, it is neces-
sary to use 64 bits. If this amount of bits is not available, double
precision would be used instead. This results in a performance de-
grading. Another approach is to use appropriate scaling in order
to reach the required dynamic range. Unfortunately, this process
is tricky and time consuming. In addition, the code size would
become bigger, the firmware would be more complex, and the de-
bugging harder. However, floating point is a more straight forward
implementation. In this floating point approach we can attack the
problem of dynamic range and precision independently. If our goal
is a high dynamic range we would allocate more bits for the ex-
ponent and if there is high demands on the precision we allocate
more bits for the mantissa. In the fixed point approach we can-
not separate these issues. By increasing the dynamic range the
precision would also increase and vice versa. In the case of fixed
point representation, an extra bit will increase the dynamic range
by 2"+ /2™ = 2. In the floating point alternative, an extra bit
in the exponent will give a 22" /2" = 2™ increase in the dynamic
range. From the calculations above it is clear that the floating point
is superior when one wants to have an high dynamic range. For the

precision aspect the floating point representation is also favorable.
Due to the normalization of all the values, the same number of
precision bits will always occur. In a fixed point representation we
have to trade precision for dynamic range. By shifting the binary
point to the right we can represent larger numbers on the expense
of lower precision. The other extreme is when there are too many
bits allocated for the precision resulting in an overflow. The IEEE
standard[4] specifies a number of floating point formats. The first
two are single precision and double precision formats that use a
total of 32 and 64 bits respectively for their implementation. The
reference decoder for the mp3 format uses the double precision
format in their calculations. While our target for this paper is low-
end applications, we will use the same concept as for the floating
point standard but reduce both the mantissa and the exponent to fit
our purposes. To find a balance between the fixed point and the
floating point, the block floating point representation can be used.
Again, the mantissa must be separated from the exponent, but the
exponent stays the same for a whole block of values. As in the
fixed point case, we will need to search through the whole block
of data to find the right exponent and then scale the values appro-
priately. As a result both high dynamic range and high precision
are possible. The drawback is when the values within a block differ
significantly. The exponent is then chosen from the largest value
and the small values will be shifted down and in turn lose most of
their precision. The three representations are shown in figure 2.

Binary point

LA T

220 2712722734 9=556

sl e ] m |

Sign bit Exponent  Mantissa

‘ Mantissa ‘
‘ Mantissa ‘
‘ Mantissa

Fig. 2. Fixed point, floating point and block floating point repre-
sentation. In fixed point, the binary point is imaginary.

5. TESTING THE QUALITY

In addition to the compliance test described in chapter3, we con-
ducted objective measurement tests. The idea was to use the psy-
choacoustic model from an mp3 encoder to see if the error intro-
duced by thereduced precision was inaudiable. for this purpose,
the LAME version 3.92 was used. First, the masking levels from
each subband were extracted. The decoder under test was then
compared to the reference decoder using double floating point pre-
cision. From this, two different measurement could be made; one
where we calculated the Signal-to-“hearable” noise ratio (SHNR)
and one where we measured the masking flag rate. The SHNR is
calculated in the same way as the more traditional Signal-to-Noise
ratio (SNR), except that the noise is exchanged with the “hearable

V-210



noise”. All the noise that is introduced by the decoder under test is
compared to the reference decoder that exceeds the masking lev-
els. The masking levels are calculated from the reference decoder
output signal.

SHNR[dB] = 10 x logio 2 Pauili] )

Z-Ph.r

where Pg,[?] is the output samples from the decoder under test
squared and

o) diffli] — Mask[i] dif f[i] > Mask[i
Phr[d] —{ 0 . . dif[f][i] <= Mzgjk[i]

Mask([i] is the masking levels from the psychoacoustic model. diff[i]
is the difference between the output signal from the reference de-
coder and the decoder under test squared; diff[i] = (pemye f =

pcmayt)? To make it more convenient are all the calculations made
(+r)

, where 1 is the left channel and r is the
right channel. The second measurement is from [5]. The flag rate
gives the percentage of frames with audible distortion, i.e., frames
where the introduced noise is above the masking level. In table 1
we used the sine wave file from the compliance test and changed
the number of bits for the mantissa and the exponent. The first
test was the single precision floating point. The result was very
good performance, but we used 32 bits for the representation. In
order to be called a full precision decoder we had to use a 19 bit
mantissa internally and a 15 bit mantissa externally. See figure 1.
The degradation from the single floating point is only 7 dB. For
limited accuracy the degradation is much bigger, especially in the
case hearable noise. Here, a 13 bits internal mantissa and 9 bits
externally were used. Further, a test was conducted where the in-
ternal and external representation were the same. Namely, 10 bits
mantissa, 5 bits exponent and 1 sign bit. This is interesting since
it fits into a 16 bit memory and a 16 bit datapath. As a conclusion
of this test the difference between the SNR and SHNR decreases
as you decrease the precision, i.e., the noise introduced becomes
more and more “hearable”.

on a midchannel.

Precision SNR SHNR Flag Rate
Single float 89.1 1158  25%1077
Full precision 829 1086 6.0x107*
Limited Accuracy 539  60.9 0.16
16-bits 462 473 0.13

Table 1. The result of the objective measurement.

The second test was the sound files from the SQAM disc [6],
Sound Quality Assessment Material, a mixture of both male and
female speech in English, French and German. It also includes
electronic tune in file frer07_1. The remaining sounds are purely
instrumental. These sounds are known to be revealing for MPEG
coding. As we can see in table 2 the SNR remains rather constant.
It is approximately 54 dB and similar to the compliance test in
table 1. It seems as if the noise introduced is constant but the
amount of “hearable” noise differ. This is one reason why the
SNR measure does not suit well for the purpose of audio quality
measurement. All the noise introduced will not effect the listening
quality.

Test file SNR SHNR Flag Rate
bassd7_1 549dB 69.0dB 0.011
frer07_1 54.6 64.3 0.084
gspi35_1 54.4 69.4 0.012
gspi35_2 54.2 72.9 0.0086
harp40_1 54.1 107.0 3.7%107°
horn23_2 54.1 64.5 0.18
quar48_1 53.6 72.2 0.047
soprd4_1 54.8 65.0 0.020
spfe49_1 55.0 70.5 0.0050
spff51_1 55.2 70.4 0.0048
spfg53_1 54.3 74.1 0.0024
spme50_1 55.3 71.2 0.0067
spmf52_1 55.2 74.6 0.0034
spmg54_1 54.8 754 0.0024
trpt21_2 53.9 73.3 0.0076
viool0_2 54.8 73.5 0.0013

Table 2. The result of the objective measurement.

In figure 3 and figure 4 the extremes from table 2 harp40_1
and horn23_2 can be seen. Harp40_1 has the highest SHNR and
the lowest flag ratio, which indicates the best sound quality. The
opposite is the file horn23_2, which has one of the lowest SHNR
and the highest flag ratio. In figure 3 we can see the difference
between the reference decoded file and the file decoded with our
proposal; 1 sign bit, 9 bits mantissa and 5 exponent bits externally
and 13 bits mantissa and 6 bits exponent internally. The differ-
ence between the two test files is not substantial. The SNR is very
similar, around 54 dB. Finally, the error signal after the masking
level is taken into account in figure 4. Here we can see that there
is a significant difference. The noise introduced from our reduced
floating point format is not masked away as well in the test file
horn23_2 as in the test file harp40_1. This is not clear from the
SNR, but with the measurements SHNR and flag ratio it becomes
much clearer.

6. SAVINGS IN POWER AND AREA

The high dynamic range from this reduced floating point has more
advantages as compared to an ordinary fixed point implementa-
tion. First, a mantissa of just 13 bits reduces the multiplier. In the
comparing fixed point implementation a multiplier of 20-24 bits is
needed. Here it is alright with just 13 bits. By using a reduced
floating point format, one can also reduce the size of the accumu-
lator register. There is no need for double precision and guard bits.
In addition, the smaller size of the variables gives smaller adder
units. In fixed point arithmetic you have to keep track of the scal-
ing of the variables, otherwise you will run into precision or over-
flow problems. Since the scaling takes place within the arithmetic
unit, there is no need for an barrel shifter, just a small one for the
six bit exponent. The absence of need for dynamic scaling results
in a decrease of the amount of code and the programming task be-
comes easier. The reduced format of the external variables, i.e. the
variables that are stored in memory, reduces the size of the data
memory. If you customize your own memory, it is enough with 15
bits for external storage. The internal variables within registers are
still larger; 20 bits.

V-211



Ditference Signal Original and tested

Time Freq

Difference Signal Original and tested

Time Freq

Fig. 3. The difference between the original and the decoder under
test. Above for the test file harp40_1 and below for horn23_2.
The frequency axle is the output from the fft and the sampling
frequency is 44.1 kHz.

Operation 20-bit reduced  20-bit fixed point
floating point

Multiplier 13x13 20x20

Accumulator 20 bits 48 bits

Register 20 bits 20 bits

Memory 15 bits 20 bits

Table 3. Comparison between 20-bit reduced floating point and
20-bit fixed point

On the negative side is the more complex arithmetic unit, where
variables need to be shifted before addition and subtraction. There
is also a need for post scaling to make sure that the bits in the man-
tissa are aligned correctly. This hardware is expensive and power
consuming. Finally, it might give a deeper pipeline.

7. FUTURE WORK

To prove this concept more accurately it has to be implemented in
silicon and conduct additional measurements. The real numbers
on silicon sizes, memory issues and implementation difficulties
could then be obtained. It might be possible to exchange algo-
rithm from the reference decoder to a more simple without any
quality degradation. This new algorithm might suit better for this
implementation.

An subjective listening test with proffesional listeners is also
preferable. We have made less complicated listening tests our-
selves, but we do not know what kind of artifacts to listen for. The
aim for this implementation is not high performing audio devices,
rather low end products. Consequentially, we might be able to
shrink the mantissa and exponent sizes even further.

Another interesting aspect would be to have a reconfigurable
architecture. The number of mantissa bits and exponent bits would
then be programmable on the fly. In that case you can trade power
consumption for audio quality.

Error Signal after Masking

Error squared
S o e & B

a
]
S
3

0 0
Time Freq

Error Signal after Masking

Error squared
o N oa @ @

a
]
S
S

Time Freq

Fig. 4. The remaining error after the the noise below masking
level is taken away. Above for the test file harp40_1 and below
for horn23_1.The frequency axle is the output from the fft and the
sampling frequency is 44.1 kHz.

8. CONCLUSION

We have proposed a floating point approach to implement a mp3
decoder. Instead of the usual fixed point we have used a floating
point implementation with different number of bits for the inter-
nal and the external representation. By this approach we can re-
duce the size of the arithmetic units and still keep good quality
sound. The firmware also becomes simpler. There will be no need
of scaling of variables, this is done automatically within the arith-
metic unit. We have also performed simpler listening tests and
done some objective sound quality measurements.

9. ACKNOWLEDGMENT
This work was financially supported by the stringent of SSF and

the Center for Industrial Information Technology at Linkdping In-
stitute of Technology (CENIIT).

10. REFERENCES

(1

[

Iso/iec-13818-3, information technology - generic coding of
moving pictures and associated audio - part 3: Audio, 1998.

2

—

Isof/iec-11172-4, information technology - generic coding of
moving pictures and associated audio - part 4: Compliance
testing, 1998.

[3] In-Cheol Park Yongseok Yi. A Fixed-Point MPEG Audio Pro-
cessor Operating at Low Frequency. [EEE Transactions on
Circuits and Systems—II: Analog and Digital Signal Process-
ing, 47:779-786, November 2001.

[4] Ieee standard for binary floating-point arithmetic 1985, 1985.

[5] Ttu-r 1387-1, method for objective measurements of perceived
audio quality, 1998.

[6] SQAM Sound Quality Assessment Material. In
http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/.

V-212

I 2



