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ABSTRACT

The unitarity property of transforms is useful in many applica-
tions (source compression, transmission, watermarking, to name a
few). In many cases, when a transform is applied on real-valued
data, it is very useful to obtain real-valued coefficients (i.e. a
reality-preserving transform). In most applications, the decorre-
lation property of the transform is of importance and it would be
very useful to control it under some transform’s parameter (e.g. in
joint source-channel coding).
This paper focuses on fractional transforms, as tools for obtaining
such properties. We propose a methodology for obtaining them
and obtain variants of the Discrete Fractional Cosine (Sine) Trans-
form which share real-valuedness as well as most of the properties
required for a fractional transform matrix. As shown in [17], such
matrices cannot be symmetric.

1. INTRODUCTION

Several unitary transforms widely used in Signal Processing re-
ceived fractional formulations: the Fourier transform, e.g. in
[1, 2, 3], and other unitary transforms, e.g. Cosine and Sine [4, 5],
Hartley [1, 5, 6], Hadamard [7], Hilbert [8, 9] and Legendre [10].
Basic properties required for a fractional matrix Aa, with a the
fractional real parameter varying in [0, 1], from here on Basic
Properties, are: orthogonality; the base matrix A obtainable as
A1; the identity matrix I obtainable as A0; reality preserving : if
x is real-valued, so does the transformed version X of x (as e.g.
for the Cosine and the Hartley Transforms); parameter continuity,
i.e. with respect to a; parameter additivity: AaAb = Aa+b; pa-
rameter commutativity: AaAb = AbAa; parameter periodicity,
the period being defined as the minimum positive natural number
p such that Aa+p = Aa: thus the fractional transform is defined
and continuous also for a outside the interval [0, 1].
No known fractional transform matrix possesses all of them. In
Section 2 we shortly recall the DCT-I , the DST-I as well as known
results on Discrete Fractional Fourier, Cosine and Sine transforms.
In Section 3 we present two methods to obtain fractional transform
matrices possessing most of the Basic properties. We show exper-
imentally that the resulting transforms can have continuously in-
creasing decorrelation power when a varies from 0 (the identity,
no decorrelation) to 1 (the base transform, which can be almost
maximally decorrelating).

2. RELATED WORK

Two well-known reality preserving transforms are the DCT and
the DST [11]. The DCT-I and the DST-I have kernel that can be
written as
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respectively, with m, n = 0, 1, . . . , N − 1, km = 1√
2

for
m = 0, N − 1, km = 1 otherwise for the DCT-I, while
m, n = 1, . . . , N for the DST-I. We name such matrices C and
S respectively and use T for either of them. In the eigenfactor-
ization T = VT ΛT Vt

T , where .t denotes matrix transposition,
VT = [v0|v1| . . . |vN−1] is a real matrix composed of orthog-
onal eigenvectors of T. The diagonal ΛT contains the eigenval-
ues of T, i.e. 1 and −1. If N is even, the eigenvalue’s multi-
plicity is N

2
for both 1 and −1. If N is odd, it is N+1

2
for 1

and N−1
2

for −1 ([4]). In [4], the method used by the same au-
thors in [1, 2] to obtain the Discrete Fractional Fourier Transform
matrix Fa = VF Λa

F Vt
F , with Λa

F having e−ina π
2 as eigenval-

ues, is used to obtain Ta = VT Λa
T Vt

T . Unique eigenvectors
are obtained from the even Hermite-Gauss eigenvectors VF of the
Fourier matrix F in the cosine case, while from the odd ones in
the sine case. T is obtained for a = 1, I for a = 0. In [1]
the same method has been used to obtain a fractional, not reality
preserving, Hartley transform. Ta enjoys all the Basic Properties
except reality preserving for a �= ±1 and a �= 0 and moreover it
is symmetric. It is 2-periodic (instead of 4-periodic as T is). In
[5, 12, 13, 14] reality preserving fractional transforms have been
defined. All these transforms do not have some of the remaining
Basic Properties.

3. NEW FRACTIONAL TRANSFORMS

Here we first formulate a method (Method I) to obtain some re-
ality preserving discrete fractional cosine and sine transforms and
then a method to define a reality preserving fractional transform
via a discrete fractional linear transform that complexifies in the
transform domain. Following this method with the Fourier Trans-
form we obtain a discrete fractional real Fourier transform which
is the fractionalization of a ”Real Fourier Transform”. The compu-
tational complexity of both methods is O(N2), with N the matrix
order.
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3.1. Method I

A fractional matrix Ta,N , −1 ≤ a ≤ 1, N = 2p, p ≥ 2, is ob-
tained by the following main steps:
Step 1 - Construct TN , with N = 2p, with p = 2, 3, ....
Step 2 - Construct VT,NΛT,NVt

T,N = TN with ΛT,N =
ΛS,N = ΛC,N ordered so that it has first the eigenvalue 1 un-
til row N/2 and then −1 from row N/2 + 1 until row N .
Step 3 - Construct VT,N (G1N/2(θ(a))⊕G2N/2(η(a)))Vt

T,N =
Ta,N , with G1N/2, G2N/2 block-diagonal Givens matrices
whose blocks are, respectively,

G12(θ(a)) =

�
cos(θ(a)) sin(θ(a))
−sin(θ(a)) cos(θ(a))

�

G22(η(a)) =

�
cos(η(a)) sin(η(a))
−sin(η(a)) cos(η(a))

�

where θ(a) �= η(a), a the fractional parameter, denote angles.
VT,N = [v0|v1| . . . |vN−1] is composed of column eigenvectors
of T and

G1N/2(θ(a)) ⊕ G2N/2(η(a))

=

�
G1N/2(θ(a)) O

O G2N/2(η(a))

�

fractionally generalizes the diagonal ΛT,N . Ta,N is not symmet-
ric for θ(a) �= ±2kπ and η(a) �= ±(2k + 1)π, k = 0, 1, 2, . . ..
The infinite set of matrices that has been defined is such that for
a = 1, θ(1) = ±2kπ, η(1) = ±(2k + 1)π and the fractional
transform reduces to the original one T. For a = 0, the fractional
transform reduces to the identity matrix. To select one fractional
matrix of that family as the intended unique one, a particular or-
thonormal complete set of vectors for VT,N has to be fixed.

3.1.1. DFrCT matrices

We limit us to consider three DFrCT (Discrete Fractional Cosine
Transforms) obtained from the DCT-I as base matrix C, and sketch
the verification of the Basic Properties they possess.
DFrCT.1 DFrCT.1 matrices Ca,N have

G1N/2(2aπ) and G2N/2(aπ).

Basic Properties:
Orthogonality: Ca,NCt

a,N = IN . Base matrix: Ca,N = CN

for a = 1 since C1,N = VC,N (IN/2 ⊕ −IN/2)V
t
C,N = CN .

Identity matrix: Ca,N = IN for a = 0 because C0,N =
VC,N (IN/2 ⊕ IN/2)V

t
C,N = IN . Reality preserving, by con-

struction. Parameter continuity, by definition. Parameter addi-
tivity: Ca,NCb,N = Ca+b,N as it is easy to verify. Parame-
ter commutativity: Ca,NCb,N = Cb,NCa,N , being Ca,N ad-
ditive and + commutative. Parameter periodicity with p = 2,
i.e. Ca+2,N = Ca,N . In fact, Ca+2,N = VC,N (G1N/2(2(a +
2)π)⊕G2N/2((a+2)π))Vt

C,N = VC,N (G1N/2(2aπ +4π)⊕
G2N/2(aπ + 2π))Vt

C,N = Ca,N .
DFrCT.2 DFrCT.2 matrices Ca,N have

G1N/2(
1

2
a(1 − a)π) and G2N/2(aπ).

Basic properties: as for the DFrCT.1, except parameter additivity,
that holds only for particular values of a. A quasi-additivity prop-
erty holds as defined in [17].
DFrCT.3 DFrCT.3 matrices Ca,N have

G1N/2(
1

2
a(1 − a)π) and G2N/2(

1

2
a(1 + a)π).

Basic properties: as for the DFrCT.2 case.

3.1.2. Other fractional cosine matrices

We obtained by Method I other fractional cosine matrices based
on the DCT-IV (a shifted version of the DCT-I) with kernel

�
2

N
cos(

(m + 1/2)(n + 1/2)π

N
)

m, n = 0, 1, . . . , N − 1. Such matrices correspond to the
DFrCT.1, DFrCT.2 and DFrCT.3 and have quite similar residue
correlation curves, as expected. The DCT-II matrix (as its trans-
pose DCT-III matrix) has not been considered because Method I
requires a symmetric base matrix to obtain an eigendecomposition
of the form VΛVt. Method I allows to construct also fractional
transform matrices based on the DCT-II one, with expectedly anal-
ogous decorrelation power, as long as we accept to miss some of
the Basic Properties, namely parameter additivity.

3.1.3. Fractional sine matrices

Three fractional sine transforms DFrST.1, DFrST.2 and DFrST.3
can be analogously obtained from the DST-I. Their Sa,N matrices
are similar to those of the respective cosine cases. They are ob-
tainable by replacing VC,N with the eigenvector matrix VS,N in
the respective cosine definitions. The Basic Properties they share
are similar as well. Sine fractional matrices based on the DST-IV
can be similarly obtained.

3.2. Method II

Let Ma,N/2 be a complex-valued fractional transform matrix with
size N/2, N even. Let, in the following diagram

x −− > x′ −− > x̂ −→ ŷ −− > y′ −− > y

x = {x0, x1, . . . , xN−2, xN−1}t be a real signal,
x′ = {x′

0, x
′
1, . . . , x

′
N−2, x

′
N−1}t be a permutation of x, that is

x′ = Px, with P a permutation matrix;
x̂ = {x′

0 + ix′
N/2+1, . . . , x

′
N/2−1 + ix′

N−1}t, with length N/2,
N even, be the complex vector built from x as it is here shown,
ŷ = Max̂, y′ = (Re(ŷ), Im(ŷ)) and y = P−1y′t. Thus,

y = Rax = P−1BaPx

Ba =

�
Re(Ma) −Im(Ma)
Im(Ma) Re(Ma)

�

is obtained from
Ma,N/2 + iMa,N/2

= Re(Ma,N/2)+iIm(Ma,N/2)+i(Re(Ma,N/2)+iIm(Ma,N/2))

= Re(Ma,N/2)−Im(Ma,N/2)+i(Re(Ma,N/2)+Im(Ma,N/2))

with Px having first all coefficients of the real part and then all
coefficients of the imaginary part. Thus Method II is composed of
the following main steps:
Step 1 - Construct a permutation matrix P.
Step 2 - Construct a complex-valued transformation matrix Ma.
Step 3 - Construct Ra = P−1BaP, with Ba as defined.
The Basic Properties of Ra, which is reality preserving by con-
struction, rely on those of Ma.
Now we take M = F and Ma = Fa = VF Λa

F Vt
F as a transform

in the family obtainable by the method in [1, 2], and we obtain an
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Ra that we can name DFrRFT.
Basic properties: orthogonality (RaR

t
a = I), inverse R−1

a =
R−a, R1 = P−1B1P as the base matrix instead of the DFT
which is not reality preserving, R0 = P−1B0P = I, reality
preserving by construction, parameter continuity by the definition
of Ra, parameter additivity (RaRb = P−1BaPP−1BbP =
P−1BaBbP = P−1Ba+bP = Ra+b), parameter commutativ-
ity, i.e. RaRb = RbRa, and parameter periodicity with p = 4,
from Fa+4 = Fa [1, 2].

3.3. Decorrelation power

The decorrelation power a transform does perform is also impor-
tant to know in Signal Processing. We experimentally verified that
the decorrelation power of a fractional transform Aa varies under
a in a continuous way and monotonically in [0, 1].
We measure the autocorrelation of Aax by the residue correlation
rc (used to compare DFT, DCT and DHT on Markov-1 signals in
[15, 16]), namely rc(Aa,x) = 1

N
‖Rxx − A−aDAa‖2

H , where
D is the diagonal matrix constructed with the diagonal elements
of AaRxxA−a, Rxx is the autocorrelation matrix of the signal x
and ‖.‖2

H is the weak Hilbert-Schmidt norm. rc(Aa,x) ≥ 0 and
0 is achieved only in case the transform is maximally decorrelat-
ing. The normalized residue correlation coefficient χ(Aa,x) =

rc(Aa,x)

‖Rxx−IN‖2
H

has a normalizing denominator measuring the maxi-

mum decorrelation amount a transform can perform.
We implemented all transforms we have here defined as MatLab
6.5.0.180913a Release 13 functions and performed experiments
mainly to determine their decorrelation powers. In all experi-
ments, we ordered the eigenvalues and eigenvectors obtained by
MatLab6.5.0 for our constructions of the discrete real cosine and
sine transforms . We used the MatLab ordering for those of the
Fourier transform. We display here a figure relative to the DFrCT.2
only, with N = 64. We compare, in pictures (A) and (B), the
residue correlation coefficients χ and rc versus 0 ≤ a ≤ 1, step
0.02, on a Markov-1 signal with ρ = 0.9. In the interval [−1, 0]
those residue correlation coefficients have a symmetric behaviour.
The decorrelation performance is shown with respect to increasing
values of a. Pictures (C) and (D) show how rc and χ depend on
the adjacent correlation ρ, 0.7 ≤ ρ ≤ 0.9999, step 0.1. The decor-
relation power is more significant when ρ increases, as expected.
For ρ < 0.7, the curves have been omitted in the figures since they
are less meaningful.

3.4. Conclusions and further work

The discrete fractional transforms formulated in this paper are re-
ality preserving, have most of the required properties as well as ex-
pected monotonously decreasing decorrelation powers. They are
not symmetric, since it was shown in [17] that by imposing the
reality preserving property some other property has to fail. Such
transforms can be useful in cases where an orthogonal, reality pre-
serving transform is required, in which the decorrelation power
is controlled by some parameter (i.e. in joint source and channel
coding). Parameter additivity can also be useful in watermarking
applications. Further work will be reported. Other useful results
are ad hoc efficient algorithms (and relative software) for the new
transforms. The methodology described in the paper can be used
in many contexts, for example for deriving reality preserving frac-
tional Hartley and Hadamard transforms.
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Fig. 1. Residue correlation coefficients (rc) and normalised residue correlation coefficients (χ) for the DFrCT.2 formulation, for N = 64,
of the fractional cosine transform Ca, on Markov-1 signals. A step of 0.02 is chosen for the fractional parameter a to plot the curves of the
residual correlation rc and χ in function of a. ρ = 0.9 in (A) and in (B). In (C) and in (D), 0.7 ≤ ρ ≤ 0.9999 with step 0.1. The curve for
ρ = 0.7 is represented with the dashed (–) line, the one for ρ = 0.8 with the dotted (..) line, the one for ρ = 0.9 with the dash-dotted (-.)
line and the curve for ρ = 0.9999 with the solid (-) line. For a = 0 no decorrelation is performed, while the decorrelation power increases
with a and reaches its maximum around a = 1. The values for a = 1 are near to 0, so that such a transform is quite decorrelating.
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