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ABSTRACT

In this paper, we propose a flexible architecture that 
performs the computation of the discrete wavelet 
transform requiring a small memory space and is capable 
of operating at high sampling rate. The architecture 
employs two filtering blocks to compute the transform 
and one buffer to store the intermediate results. Each 
filtering block has two processing units that operate 
independently in parallel using a two-phase scheduling. 
An efficient scheme for the synchronization of the data 
flow among the three blocks is provided in order to 
minimize the buffer size and increase the speed of 
operation. Verilog and HSPICE simulation results are 
presented to show that the proposed architecture is more 
efficient for the computation of a fully decomposed 
discrete wavelet transform with high-tap filters than some 
other existing architectures in terms of their areas and 
speed of operations. 

1. INTRODUCTION 

The discrete wavelet transform (DWT) [1] is playing 
an increasingly important role in the area of signal 
processing. As an analysis tool, the wavelet transform 
decomposes the signals into different frequency sub-bands 
with appropriate time resolutions. The higher the 
frequency band, the finer the time resolution becomes. 
According to this property, the discrete wavelet transform 
provides an alternative to Fourier analysis for an efficient 
representation of a signal and its analysis using adaptive 
time-frequency windows. The structure to perform the 
DWT is usually based on a binary tree [1] consisting of 
lowpass (LP) and highpass (HP) filter banks. To make the 
DWT practical for on-line applications, the structure 
realizing the DWT must be designed to operate at high 
speed. Accordingly, different kinds of architectures for 
VLSI implementation have been proposed to perform fast 
DWT with efficient hardware utilization. Most of the 
architectures can be categorized into two groups, non-
cascaded and cascaded. An architecture belong to the non-

cascaded group performs the DWT using a single 
computation block with parallel [2] or systolic [3] filtering 
structures and a number of registers to store the 
intermediate results. The DWT is performed using the 
single computation block for all the levels using a 
recursive pyramid algorithm (RPA) [1], but the time to 
perform the entire DWT is long. Moreover, the design of 
the memory is complicated in the case when the filter 
length L or the number of resolution levels J is large. One 
of the solutions addressing these problems is to use 
cascaded structures, such as those proposed in [4] and [5]. 
A cascaded structure has J blocks for the J-level DWT, 
one for each level, performing in parallel. The time taken 
to perform the DWT in this case can be smaller than that 
of the non-cascaded ones by a factor of J, at the expense 
of an increased hardware. On one hand, with the 
characteristic of higher speed, the cascaded structure can 
be more suitable for on-line DWT applications. On the 
other hand, however, the cascaded blocks in such a 
system could be different from each other, thus increasing 
the complexity of the design and lowering the scalability 
of the circuits realizing the structure.

In this paper, we propose an architecture for VLSI 
implementation to compute 1-D DWT. The design of this 
architecture focuses on improving the speed and on 
reducing the area required for the implementation. Also, 
the proposed architecture aims at providing scalability to 
the circuit realizing the DWT. Section 2 describes the 
proposed architecture. In Section 3, simulation results are 
presented to evaluate the performance of the design by 
comparing it with that of other structures. Finally, in 
Section 4, certain conclusions are made and some of the 
features of the proposed architecture highlighted. 

2. PROPOSED ARCHITECTURE 
 FOR DWT COMPUTATION 

Most of the DWT architectures, aiming at reducing 
the size of the buffer, use recursive pyramid algorithm 
presented in [1] to implement the transform of all levels 
simultaneously. However, in this implementation, the size 
of the buffer still increases with the filter length. If the 
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Figure 2. Timing diagram for the operations performed by the 
blocks B-FIR and B-FIR*. The grey bars represent the 
computations of the first level performed by the block B-FIR. 
The black bars indicate those of the other levels performed by 
B-FIR*. The number under the bar represents the quantity of 
intermediate results of given level. 
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DWT is performed serially, level by level, the buffer is 
used to store the intermediate results of one level at a time. 
The required buffer space, in this case, usually depends on 
the number of samples in the data sequence, and the 
amount of data in the first level could be very large. Thus, 
it is necessary to devise a new approach to handle a large 
number of signal samples with a minimum-size buffer. To 
this end, two points should be noted. Firstly, in the filtering 
process with down sampling [1], the amount of data 
generated for the computation of one level is one-half of 
that in the previous level. This means that the buffer space 
needed to store the data generated in the first level is 
almost equal to that in all other levels together. Thus a 
buffer space can be partitioned into two parts, one for the 
data generated in the first level and the other for all those 
in the succeeding levels. Secondly, the data stored in the 
buffer from one level is to be used only for the next-level 

computation. Thus, if the computations of all the levels are 
to be performed in parallel, at least part of the data 
produced by one level must be available in the buffer for 
use by the next level. Based on these two points, we now 
propose an architecture containing one buffer and two 
filtering blocks, one for the first level and the other for all 
the remaining levels, to compute 1-D DWT. The basic 
structure is shown in Figure 1. The block performing the 
computation of the first level is indicated as B-FIR and that 
for the computation of all other levels as B-FIR*. The 
quantity N denotes the number of the input samples, and Li

and Hi are the outputs of the HP and LP filters at level i, 
where i = 2, 3,...,J. A buffer, denoted as B-BUF, is placed 
between the two filtering blocks and is designed to suit the 
requirement of the input data supply for B-FIR*. 

For a fully decomposed DWT, if the number of 

resolution levels is J, the sequence length N is equal to 2J.
It should be mentioned that the computation of the first 

level requires N cycles to produce 2
N  intermediate sample 

points, that of the second level requires 2
N  cycles to 

produce 4
N  points, and that of the third level, 4

N  cycles to 

produce 8
N  points, and so on. Based on these 

requirements, we present a timing diagram shown in 
Figure 2, for the operations to take place in parallel by the 

two filtering blocks. After 2
N clock cycles, 4

N intermediate 

results of the first level are produced by B-FIR block and 
thus the block B-FIR* can start to perform the computation 
for the second level. The operations of B-FIR* are timed in 
such a way that the computations for the other levels are 
performed one by one, as shown in Figure 2, so that the 
intermediate results are used immediately after their 
generation for performing operations of the next level. The 

length of the B-BUF can be only )1( 4
N . In this way, the 

computations of the DWT is divided into two sets of 
parallel operations, one for the first level lasting N cycles 
and the other for all the other levels lasting N-1 cycles. 

The structure of the filtering block B-FIR or B-FIR* 
using 6-tap filters is shown in Figure 3. It has two 
processing units, UNIT1 and UNIT2, operating in parallel. 
The input sequence is spilt into two sub-sequences, one 
consisting of the odd numbered samples and the other of 
the even numbered samples of the input sequence. These 
two sub-sequences are applied to the latches of the two 
processing units, at the rising and falling edges of the 
clock, respectively. Each of the filtering blocks, B-FIR and 
B-FIR*, performs the HP and the LP filtering alternatively. 
Each filtering block outputs one sample of data per cycle. 
As the HP and LP filtering operations are performed 
alternately, the LP (or HP) produces one sample every 
other cycle. In the two filtering blocks, the filter 
coefficients, hi (for HP) and gi (for LP), where 

k
k

kL hg )1(1 (k = 1, 2, …, L), are loaded at the 

same time. When UNIT1 performs the LP (HP) filtering 
with the even-numbered samples, UNIT2 does the HP (LP) 
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Figure 1.  Proposed architecture for the computation of 1-D 
DWT with two dedicated filtering blocks, B-FIR and B-
FIR*, and a special buffer, B-BUF. 

Figure 3.  Details of the filtering block, B-FIR or B-FIR*. 
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filtering with the odd-numbered samples. In this way, the 
hardware is fully used. The speed of the DWT computation 
depends on the delay of the filtering blocks consisting of 
the modules, multipliers, adders and latches. The carry 
save adders (CSA), instead of the carry propagation adders 
(CPA), are used between the multiplies and the CPA in the 
two processing units to reduce the delay of the filtering 
blocks. 

In the proposed structure, the buffer B-BUF should be 
designed to produce a data flow that suits the operations of 
the two filtering blocks, in particular, those of the B-FIR* 
block. The buffer has two input paths, i.e., it accepts one 
output sample from each filtering block every two cycles, 
and it provides one output sample from its stored data, by 
shifting it, to B-FIR* block each clock cycle. The loading 
of the samples into the buffer should be specifically 
arranged so that the B-FIR* block can receive the correct 
samples shifted out of the buffer, according to the timing 
diagram shown in Figure 2. Figure 4 illustrates the data 
updating of B-BUF for the DWT computation of a 32-
sample sequence. In this case, the buffer consists of nine 
shift registers. Each rectangle shows the buffer content 
during a given clock cycle, and the data shift from the 
bottom to the top of the buffer. The first 16 rectangles 
illustrate the data updating of the first 16 cycles at the 
beginning of the transform computation. The remaining 
rectangles illustrate the data updating when the circuit 
realizing the proposed architecture is in full operation and 
the buffer fully occupied. 

To recapitulate, the new scheme aims at developing 
an architecture with improved performance to compute the 

DWT. The input data sequence to each filtering block is 
split into two sub-sequences according to odd and even 
numbered samples of the input sequence. To accelerate the 
filtering process, the application of the two sub-sequences 
to the two processing units in B-FIR (or B-FIR*) are timed 
with the rising and falling edges of the clock signal, 
respectively. Thus, the delay in the filtering process can be 
significantly reduced. Moreover, in order to reduce the 
area of the circuit implementing the proposed architecture, 
the architecture itself is designed to operate with a buffer 
that is much smaller than that used in most of the DWT 
circuits. It should also be noted that the filtering blocks are 
designed with a given number of taps and can fit for 
different number of resolution levels of the transform, thus 
providing certain flexibility for the DWT applications. 
Such a flexibility is obtained without sacrificing the area of 
the implementation or speed. In the following section, the 
results of the performance evaluation of the proposed 
scheme obtained through simulations are presented. 

3. PERFORMANCE EVALUATION 

The efficiency of the proposed approach is evaluated 
by Verilog and HSPICE simulations of the proposed 
architecture. The simulation is carried out for a 6-level 
DWT computation using 10-tap filters, i.e. J = 6, L = 10, 
and N = 64. A complete DWT computation can be 
performed in Nclk = 2J clock cycles. The minimal cycle 
time tclk is given by 

multcsatcpatMlatchtSclkt  (1) 

Figure 4. Data updating in the buffer for the DWT computation of a sequence with N = 32. Zji is the result of the 
computation for the jth level, ( 51 j  and ji 2/320  ). Xji is the result of the computation for the next input sequence. 

There are two waiting cycles before B-FIR starts the DWT computation for the new sequence. 
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where tlatch is the delay of the latch, tcpa and tcsa are, 
respectively, the delays of the two adders, CPA and CSA, 
and tmul is the delay of the multiplier. The quantities M and
S represent, respectively, the numbers of CSAs and 
latches in each processing unit of a filtering block. 

We use HSPICE simulation to evaluate the delays of 
the basic modules, namely tlatch, tmul, tcas and tcpa. These 
results are then used in the Verilog simulation. Also, the 
structure of these modules are needed for the HSPICE 
simulation in order to estimate the area of an 
implementation of the proposed architecture. Based on 
these results, tclk can be calculated in a realistic manner 
and then verify using the Verilog simulation. 

The simulation results of an implementation of the 
proposed architecture as well as those of four other 
architectures given in [2]-[5] are listed in Table I. In this 
table, the first three columns show the number of each of 
the three modules, namely, multipliers, adders, and 
registers used in each implementation. Assuming the area 
of a register to be unity, the area of an adder is determined 
to be 1.5 and that of a multiplier 4.2. The proposed design 
has a smaller number of registers than other designs have, 
which results in a reduced overall area. Compared to the 
DRU cascaded architecture of [5], that has the smallest 
area among the four other architectures considered in this 
paper, the implementation of the proposed architecture 
has a 16.8% less area. The fourth and fifth columns of the 
table illustrate that the proposed architecture provides a 
22.5% improvement in the speed compared to that of the 
parallel and DRU cascaded architectures, but the speed is 
a bit slower compared to that of the systolic architecture 
of [3]. The systolic cascaded architecture of [4] is, 
however, much faster, but this was achieved at the 
expense of a much larger area. In terms of the latency, the 
proposed architecture has a significant advantage over the 
systolic architectures. 

4. CONCLUSION 

In this paper, we have proposed a new architecture 
for the computation of the 1-D DWT. This architecture 
includes two types of blocks: two filtering blocks and one 
buffer block. The two types of blocks have been specially 

designed to operate efficiently and at a high speed by 
introducing parallel processing in the filtering blocks and 
special scheme for the data flow into the buffer block. The 
simulation results have shown that the proposed 
architecture has a better performance, in terms of the 
speed of operation and the area of implementation, in 
comparison to that of other architectures in similar 
categories. Since the number of taps affects the filtering 
blocks only in changing the number of modules in the 
blocks, and the number of levels affects only the size of 
the buffer, the proposed architecture is modular and 
flexible.  

The proposed structure can be optimized by 
combining some of the modules or adding pipelines in the 
processing units of the filtering blocks to provide a better 
speed performance. The architecture presented in this 
paper is appropriate for on-line applications, such as real-
time audio coding and image compression. 
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Architecture Number of 
multipliers 
 (tmul =6.2 ns) 

Number of adders 
(tcpa=2.4 ns,  
tcsa=0.4 ns) 

Number of 
registers
(tlatch =0.4 ns) 

Number of 
clock cycles 
(Nclk)

Duration of the 
clock cycle (tclk)
ns

*Latency of the 
filtering block 
in clock cycles 

Parallel [2] 20 18 60 66 17.8 1 
Systolic [3] 20 20 60 66 10.2 10 
DRU cascaded [5] 20 18 59 66 17.8 1 
Systolic cascaded [4] 40 37 60 34 11.8 5 
Proposed 20 18 36 66 13.8 1.5 

TABLE I . A COMPARATIVE PERFORMANCE OF VARIOUS ARCHITECTURES FOR 10-TAP FILTER BASED DWT COMPUTATION WITH J = 6, N = 64. 

* The Latency is defined as the time required, measured by the number of clock cycles, for the filtering block to complete its procedure of the 
processing. 
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