
AN EFFICIENT BUFFER-BASED ARCHITECTURE FOR
ON-LINE COMPUTATION OF 1-D DISCRETE WAVELET TRANSFORM

Chengjun Zhang, Chunyan Wang and M.Omair Ahmad, Fellow, IEEE

Center for Signal Processing and Communications
Department of Electrical and Computer Engineering

Concordia University
Montréal, Québec, Canada H3G 1M8

ABSTRACT

In this paper, we propose a flexible architecture that
performs the computation of the discrete wavelet
transform requiring a small memory space and is capable
of operating at high sampling rate. The architecture
employs two filtering blocks to compute the transform
and one buffer to store the intermediate results. Each
filtering block has two processing units that operate
independently in parallel using a two-phase scheduling.
An efficient scheme for the synchronization of the data
flow among the three blocks is provided in order to
minimize the buffer size and increase the speed of
operation. Verilog and HSPICE simulation results are
presented to show that the proposed architecture is more
efficient for the computation of a fully decomposed
discrete wavelet transform with high-tap filters than some
other existing architectures in terms of their areas and
speed of operations.

1. INTRODUCTION

The discrete wavelet transform (DWT) [1] is playing
an increasingly important role in the area of signal
processing. As an analysis tool, the wavelet transform
decomposes the signals into different frequency sub-bands
with appropriate time resolutions. The higher the
frequency band, the finer the time resolution becomes.
According to this property, the discrete wavelet transform
provides an alternative to Fourier analysis for an efficient
representation of a signal and its analysis using adaptive
time-frequency windows. The structure to perform the
DWT is usually based on a binary tree [1] consisting of
lowpass (LP) and highpass (HP) filter banks. To make the
DWT practical for on-line applications, the structure
realizing the DWT must be designed to operate at high
speed. Accordingly, different kinds of architectures for
VLSI implementation have been proposed to perform fast
DWT with efficient hardware utilization. Most of the
architectures can be categorized into two groups, non-
cascaded and cascaded. An architecture belong to the non-

cascaded group performs the DWT using a single
computation block with parallel [2] or systolic [3] filtering
structures and a number of registers to store the
intermediate results. The DWT is performed using the
single computation block for all the levels using a
recursive pyramid algorithm (RPA) [1], but the time to
perform the entire DWT is long. Moreover, the design of
the memory is complicated in the case when the filter
length L or the number of resolution levels J is large. One
of the solutions addressing these problems is to use
cascaded structures, such as those proposed in [4] and [5].
A cascaded structure has J blocks for the J-level DWT,
one for each level, performing in parallel. The time taken
to perform the DWT in this case can be smaller than that
of the non-cascaded ones by a factor of J, at the expense
of an increased hardware. On one hand, with the
characteristic of higher speed, the cascaded structure can
be more suitable for on-line DWT applications. On the
other hand, however, the cascaded blocks in such a
system could be different from each other, thus increasing
the complexity of the design and lowering the scalability
of the circuits realizing the structure.

In this paper, we propose an architecture for VLSI
implementation to compute 1-D DWT. The design of this
architecture focuses on improving the speed and on
reducing the area required for the implementation. Also,
the proposed architecture aims at providing scalability to
the circuit realizing the DWT. Section 2 describes the
proposed architecture. In Section 3, simulation results are
presented to evaluate the performance of the design by
comparing it with that of other structures. Finally, in
Section 4, certain conclusions are made and some of the
features of the proposed architecture highlighted.

2. PROPOSED ARCHITECTURE
 FOR DWT COMPUTATION

Most of the DWT architectures, aiming at reducing
the size of the buffer, use recursive pyramid algorithm
presented in [1] to implement the transform of all levels
simultaneously. However, in this implementation, the size
of the buffer still increases with the filter length. If the

V - 2010-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

Cycles
Level 1
Level 2
Level 3
Level 4

N/2 N 3N/2 2N 5N/2

N/2 N/2

N/8 N/8 N/8

N/4 N/4

Figure 2. Timing diagram for the operations performed by the
blocks B-FIR and B-FIR*. The grey bars represent the
computations of the first level performed by the block B-FIR.
The black bars indicate those of the other levels performed by
B-FIR*. The number under the bar represents the quantity of
intermediate results of given level.

N/16 N/16 N/16

DWT is performed serially, level by level, the buffer is
used to store the intermediate results of one level at a time.
The required buffer space, in this case, usually depends on
the number of samples in the data sequence, and the
amount of data in the first level could be very large. Thus,
it is necessary to devise a new approach to handle a large
number of signal samples with a minimum-size buffer. To
this end, two points should be noted. Firstly, in the filtering
process with down sampling [1], the amount of data
generated for the computation of one level is one-half of
that in the previous level. This means that the buffer space
needed to store the data generated in the first level is
almost equal to that in all other levels together. Thus a
buffer space can be partitioned into two parts, one for the
data generated in the first level and the other for all those
in the succeeding levels. Secondly, the data stored in the
buffer from one level is to be used only for the next-level

computation. Thus, if the computations of all the levels are
to be performed in parallel, at least part of the data
produced by one level must be available in the buffer for
use by the next level. Based on these two points, we now
propose an architecture containing one buffer and two
filtering blocks, one for the first level and the other for all
the remaining levels, to compute 1-D DWT. The basic
structure is shown in Figure 1. The block performing the
computation of the first level is indicated as B-FIR and that
for the computation of all other levels as B-FIR*. The
quantity N denotes the number of the input samples, and Li

and Hi are the outputs of the HP and LP filters at level i,
where i = 2, 3,...,J. A buffer, denoted as B-BUF, is placed
between the two filtering blocks and is designed to suit the
requirement of the input data supply for B-FIR*.

For a fully decomposed DWT, if the number of

resolution levels is J, the sequence length N is equal to 2J.
It should be mentioned that the computation of the first

level requires N cycles to produce 2
N intermediate sample

points, that of the second level requires 2
N cycles to

produce 4
N points, and that of the third level, 4

N cycles to

produce 8
N points, and so on. Based on these

requirements, we present a timing diagram shown in
Figure 2, for the operations to take place in parallel by the

two filtering blocks. After 2
N clock cycles, 4

N intermediate

results of the first level are produced by B-FIR block and
thus the block B-FIR* can start to perform the computation
for the second level. The operations of B-FIR* are timed in
such a way that the computations for the other levels are
performed one by one, as shown in Figure 2, so that the
intermediate results are used immediately after their
generation for performing operations of the next level. The

length of the B-BUF can be only)1(4
N . In this way, the

computations of the DWT is divided into two sets of
parallel operations, one for the first level lasting N cycles
and the other for all the other levels lasting N-1 cycles.

The structure of the filtering block B-FIR or B-FIR*
using 6-tap filters is shown in Figure 3. It has two
processing units, UNIT1 and UNIT2, operating in parallel.
The input sequence is spilt into two sub-sequences, one
consisting of the odd numbered samples and the other of
the even numbered samples of the input sequence. These
two sub-sequences are applied to the latches of the two
processing units, at the rising and falling edges of the
clock, respectively. Each of the filtering blocks, B-FIR and
B-FIR*, performs the HP and the LP filtering alternatively.
Each filtering block outputs one sample of data per cycle.
As the HP and LP filtering operations are performed
alternately, the LP (or HP) produces one sample every
other cycle. In the two filtering blocks, the filter
coefficients, hi (for HP) and gi (for LP), where

k
k

kL hg)1(1 (k = 1, 2, …, L), are loaded at the

same time. When UNIT1 performs the LP (HP) filtering
with the even-numbered samples, UNIT2 does the HP (LP)

N

N/2
H1

Hi

L1

 N/2
B-FIR

B-BUF
B-FIR*

Li

Figure 1. Proposed architecture for the computation of 1-D
DWT with two dedicated filtering blocks, B-FIR and B-
FIR*, and a special buffer, B-BUF.

Figure 3. Details of the filtering block, B-FIR or B-FIR*.

UNIT2

EVEN
Latch

Multiplier

CPA

CSA
UNIT1

ODD

T

T

+

+

*

+

V - 202

➡ ➡

filtering with the odd-numbered samples. In this way, the
hardware is fully used. The speed of the DWT computation
depends on the delay of the filtering blocks consisting of
the modules, multipliers, adders and latches. The carry
save adders (CSA), instead of the carry propagation adders
(CPA), are used between the multiplies and the CPA in the
two processing units to reduce the delay of the filtering
blocks.

In the proposed structure, the buffer B-BUF should be
designed to produce a data flow that suits the operations of
the two filtering blocks, in particular, those of the B-FIR*
block. The buffer has two input paths, i.e., it accepts one
output sample from each filtering block every two cycles,
and it provides one output sample from its stored data, by
shifting it, to B-FIR* block each clock cycle. The loading
of the samples into the buffer should be specifically
arranged so that the B-FIR* block can receive the correct
samples shifted out of the buffer, according to the timing
diagram shown in Figure 2. Figure 4 illustrates the data
updating of B-BUF for the DWT computation of a 32-
sample sequence. In this case, the buffer consists of nine
shift registers. Each rectangle shows the buffer content
during a given clock cycle, and the data shift from the
bottom to the top of the buffer. The first 16 rectangles
illustrate the data updating of the first 16 cycles at the
beginning of the transform computation. The remaining
rectangles illustrate the data updating when the circuit
realizing the proposed architecture is in full operation and
the buffer fully occupied.

To recapitulate, the new scheme aims at developing
an architecture with improved performance to compute the

DWT. The input data sequence to each filtering block is
split into two sub-sequences according to odd and even
numbered samples of the input sequence. To accelerate the
filtering process, the application of the two sub-sequences
to the two processing units in B-FIR (or B-FIR*) are timed
with the rising and falling edges of the clock signal,
respectively. Thus, the delay in the filtering process can be
significantly reduced. Moreover, in order to reduce the
area of the circuit implementing the proposed architecture,
the architecture itself is designed to operate with a buffer
that is much smaller than that used in most of the DWT
circuits. It should also be noted that the filtering blocks are
designed with a given number of taps and can fit for
different number of resolution levels of the transform, thus
providing certain flexibility for the DWT applications.
Such a flexibility is obtained without sacrificing the area of
the implementation or speed. In the following section, the
results of the performance evaluation of the proposed
scheme obtained through simulations are presented.

3. PERFORMANCE EVALUATION

The efficiency of the proposed approach is evaluated
by Verilog and HSPICE simulations of the proposed
architecture. The simulation is carried out for a 6-level
DWT computation using 10-tap filters, i.e. J = 6, L = 10,
and N = 64. A complete DWT computation can be
performed in Nclk = 2J clock cycles. The minimal cycle
time tclk is given by

multcsatcpatMlatchtSclkt (1)

Figure 4. Data updating in the buffer for the DWT computation of a sequence with N = 32. Zji is the result of the
computation for the jth level, (51 j and ji 2/320). Xji is the result of the computation for the next input sequence.

There are two waiting cycles before B-FIR starts the DWT computation for the new sequence.

V - 203

➡ ➡

where tlatch is the delay of the latch, tcpa and tcsa are,
respectively, the delays of the two adders, CPA and CSA,
and tmul is the delay of the multiplier. The quantities M and
S represent, respectively, the numbers of CSAs and
latches in each processing unit of a filtering block.

We use HSPICE simulation to evaluate the delays of
the basic modules, namely tlatch, tmul, tcas and tcpa. These
results are then used in the Verilog simulation. Also, the
structure of these modules are needed for the HSPICE
simulation in order to estimate the area of an
implementation of the proposed architecture. Based on
these results, tclk can be calculated in a realistic manner
and then verify using the Verilog simulation.

The simulation results of an implementation of the
proposed architecture as well as those of four other
architectures given in [2]-[5] are listed in Table I. In this
table, the first three columns show the number of each of
the three modules, namely, multipliers, adders, and
registers used in each implementation. Assuming the area
of a register to be unity, the area of an adder is determined
to be 1.5 and that of a multiplier 4.2. The proposed design
has a smaller number of registers than other designs have,
which results in a reduced overall area. Compared to the
DRU cascaded architecture of [5], that has the smallest
area among the four other architectures considered in this
paper, the implementation of the proposed architecture
has a 16.8% less area. The fourth and fifth columns of the
table illustrate that the proposed architecture provides a
22.5% improvement in the speed compared to that of the
parallel and DRU cascaded architectures, but the speed is
a bit slower compared to that of the systolic architecture
of [3]. The systolic cascaded architecture of [4] is,
however, much faster, but this was achieved at the
expense of a much larger area. In terms of the latency, the
proposed architecture has a significant advantage over the
systolic architectures.

4. CONCLUSION

In this paper, we have proposed a new architecture
for the computation of the 1-D DWT. This architecture
includes two types of blocks: two filtering blocks and one
buffer block. The two types of blocks have been specially

designed to operate efficiently and at a high speed by
introducing parallel processing in the filtering blocks and
special scheme for the data flow into the buffer block. The
simulation results have shown that the proposed
architecture has a better performance, in terms of the
speed of operation and the area of implementation, in
comparison to that of other architectures in similar
categories. Since the number of taps affects the filtering
blocks only in changing the number of modules in the
blocks, and the number of levels affects only the size of
the buffer, the proposed architecture is modular and
flexible.

The proposed structure can be optimized by
combining some of the modules or adding pipelines in the
processing units of the filtering blocks to provide a better
speed performance. The architecture presented in this
paper is appropriate for on-line applications, such as real-
time audio coding and image compression.

REFERENCES

[1] M. Vishwanath, “The recursive pyramid algorithm
for the discrete wavelet transform,” IEEE Trans. Signal
Processing, vol. 42, no. 3, pp. 673–677, Mar. 1994.
[2] C. Chakrabarti, M. Vishwanath, and R. M. Owens,
“Architectures for wavelet transforms: A survey,” Journal
of VLSI Signal Processing, vol. 14, no. 2, pp. 171–192,
Dec. 1996.
[3] K.Parhi and T.Denk, “Systolic VLSI architectures
for 1-D discrete wavelet transforms,” in Proc. Asilomar
Conf. on Signals, Systems and Computers, Nov. 1998,
Pacific Grove, California.
[4] F.Marino, D.Guevorkian, and J.Astola, “Highly
efficient high-speed/low-power architectures for the 1-D
discrete wavelet transform,” IEEE Trans. CAS-II, vol. 47,
no. 12, pp. 1492-1502, Dec. 2000.
[5] T.Park, “Efficient VLSI architecture for one-
dimensional discrete wavelet transform using a scalable
data reorder unit,” in Proc. International Technical
Conference on Circuits/Systems, Computers and
Communications, July 2002.

Architecture Number of
multipliers
 (tmul =6.2 ns)

Number of adders
(tcpa=2.4 ns,
tcsa=0.4 ns)

Number of
registers
(tlatch =0.4 ns)

Number of
clock cycles
(Nclk)

Duration of the
clock cycle (tclk)
ns

*Latency of the
filtering block
in clock cycles

Parallel [2] 20 18 60 66 17.8 1
Systolic [3] 20 20 60 66 10.2 10
DRU cascaded [5] 20 18 59 66 17.8 1
Systolic cascaded [4] 40 37 60 34 11.8 5
Proposed 20 18 36 66 13.8 1.5

TABLE I . A COMPARATIVE PERFORMANCE OF VARIOUS ARCHITECTURES FOR 10-TAP FILTER BASED DWT COMPUTATION WITH J = 6, N = 64.

* The Latency is defined as the time required, measured by the number of clock cycles, for the filtering block to complete its procedure of the
processing.

V - 204

➡ ➠

