
Polyphase Structures for Multiplierless Biorthogonal Filter Banks

K.A. Kotteri
Virginia Tech

kkotteri@vt.edu

A. E. Bell
Virginia Tech
abell@vt.edu

J. E. Carletta
University of Akron
carlett@uakron.edu

Abstract— Design techniques for high performance, fixed-
point, multiplierless filter banks are presented. A technique is
developed for designing a fixed-point polyphase filter structure
such that the hardware is highly efficient and the image compres-
sion quality is minimally impacted by the use of fixed-point math-
ematics. Image compression using the biorthogonal 9/7 discrete
wavelet transform provides a motivating example. The results
show that implementation structure has a significant impact on
the resulting hardware cost, throughput, and compression quality.
We achieve a polyphase structure with twice the throughput
rate of non-polyphase structures and image compression fidelity
within 0.2dB of the unquantized, floating-point filters.

I. INTRODUCTION

This work investigates fast hardware designs of biorthogonal
perfect reconstruction filter banks. We demonstrate our new
algorithms with the biorthogonal 9/7 wavelet filters that are
employed in the JPEG2000 lossy image coder [1]. High-
performance multiplierless implementations of the biorthog-
onal 9/7 discrete wavelet transform (DWT) on a field pro-
grammable gate array (FPGA) are described.

We employ several hardware and compression performance
metrics. Hardware cost is measured in terms of the number of
logic elements used. Throughput, or the number of data outputs
per second that the filter can generate, relates to how long it
takes to process an image. Peak signal-to-noise ratio (PSNR)
is the quantitative measure used to compare the fidelity of a
compressed image with its original.

We derive a new polyphase, cascade structure and perform
a comprehensive hardware and compression comparison of
the direct polyphase, cascade polyphase, direct non-polyphase,
and cascade non-polyphase structures. Section II provides
some background on the biorthogonal 9/7 DWT filters and
on the role of the filter structure in an implementation’s
performance. Section III derives new polyphase structures
that preserve compression performance while doubling the
throughput. Section IV compares the various implementations
in terms of hardware cost, throughput and PSNR. The impli-
cations of our results are presented in Section V.

II. BACKGROUND

The structure of one stage of a two-channel biorthogonal
filter bank is shown in Fig. 1. The symmetric, unquantized
lowpass filter (LPF) coefficients, h(n) and f(n), for the
biorthogonal 9/7 filters are listed in Table I [2].

The ultimate goal of a filter bank is perfect reconstruction
(PR); the synthesis section should exactly invert the analysis
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Fig. 1. Two-channel biorthogonal scalar wavelet filter bank.

TABLE I

UNQUANTIZED BIORTHOGONAL 9/7 WAVELET COEFFICIENTS.

n h(n) n f(n)
0,8 0.03782845550726 0,6 -0.06453888262870
1,7 -0.02384946501956 1,5 -0.04068941760916
2,6 -0.11062440441844 2,4 0.41809227322162
3,5 0.37740285561283 3 0.78848561640558
4 0.85269867900889

section, so that the reconstructed image, X̂ , will equal the
original image, X (to within an integer shift l). This is possible
when aliasing and distortion are avoided. Aliasing is routinely
avoided by deriving the highpass filters from the lowpass
filters: G(z) = F (−z) and J(z) = −H(−z). PR then reduces
to satisfying the no-distortion condition [3]:

F (z)H(z) − F (−z)H(−z) = 2z−l. (1)

The 9/7 filters meet the no-distortion condition given in-
finite precision; however, filters implemented in fixed-point
hardware do not satisfy this condition. The key to perfect
reconstruction in fixed-point hardware is to design a quantized
magnitude response of the cascaded LPFs, F ′(z)H ′(z), as
close to the unquantized case as possible.

Fast, fixed-point filter approximations are multiplierless
representations where multiplication is performed by shifting
and adding. Each filter coefficient is represented as sums or
differences of powers of two (SPT). In multiplierless filter
design, the number of non-zero SPT digits T can be used
to control the trade-off between hardware cost and image
compression performance. T corresponds roughly to hardware
cost; it represents the number of terms that must be added to
perform the filter computation. In general, the higher the T ,
the closer the quantized PSNR values are to the unquantized
PSNR values; conversely, smaller T implies less hardware
but worse PSNR. Methods for the effective allocation of SPT
terms to the coefficients of direct and cascade form filters have
been recently examined [4]. They are summarized here.

Direct form implementations of the two LPFs, H(z) and
F (z), require that sixteen coefficients be quantized; this alters
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the magnitude response of the unquantized cascaded LPFs,
F (z)H(z). In most images energy is concentrated at low
frequencies; this implies that the product of the quantized
LPFs, F ′(z)H ′(z), must closely resemble the product of the
unquantized LPFs, F (z)H(z) at low frequencies. The “direct
form with gain compensation” method [4] for allocating SPT
terms to the filter coefficients accounts for this by reserving
a few terms for a compensating gain G. Table II(a) lists the
quantized coefficients for T = 32 using this method.

In addition to the magnitude response, the filter’s zero
locations are also important. H(z) and F (z) each have four
zeros at z = −1 that are critical to image compression
performance. Perturbation in the zeros at z = −1 causes
DC leakage through the analysis highpass filter G(z) and the
subjective quality of the compressed and reconstructed images
is degraded by the checkerboarding artifact. In the direct form
the quantization of each coefficient moves all of the zeros and
checkerboarding is difficult to avoid.

The cascade form implementation represents each of the
two 9/7 LPFs as a cascade of two sections. The first section
with coefficients (1, 4, 6, 4, 1) implements the four zeros at
z = −1, while the second implements the remaining zeros.
Now the 9/7 LPFs can be written as

H(z) = k9(z
4 + 4z3 + 6z2 + 4z + 1)

·(z4 + a1z
3 + a2z

2 + a1z + 1)

F (z) = k7(z
4 + 4z3 + 6z2 + 4z + 1)

·(z2 + a3z + 1)

where, a1 = −4.630463620, a2 = 9.597484376, a3 =
−3.369536379, k9 = 0.037828455 and k7 = −0.064538883.
Placing the zeros at z = −1 in a section of their own ensures
that these zeros are unaffected by quantization in the rest of
the filter. Only six SPT terms are required to implement these
four zeros exactly. The remaining SPT terms are allocated to
coefficients a1, a2, a3, and gain factors k9 and k7.

The “cascade form with z1 compensation” method [4] for
designing the cascade sections for the LPFs quantizes a1, a2

and a3 such that the perturbation in zeros of the second section
of the synthesis LPF offsets the perturbation in zeros of the
analysis LPF. This method has been shown to significantly
outperform the direct form implementation in terms of PSNR
and image quality [4]. A set of quantized coefficients for this
method with T = 32 is shown in Table II(b).

III. POLYPHASE STRUCTURES

The filter bank structure shown in Fig. 1 is inefficient in
terms of data throughput. In the analysis stage, the down-
sampling operation follows the filtering, and half the sam-
ples just computed by the filters are discarded. Thus, the
output rate of the analysis stage is half the input rate. In
the synthesis stage, the upsampling operation precedes the
filtering operation. Here, the filters must operate at double the
input rate; however, at any given time, half of the multipliers
in the synthesis filters are multiplying zeros. Thus, half of
the mathematical operations are wasted in a non-polyphase

TABLE II

QUANTIZED FILTER COEFFICIENTS IN DECIMAL AND SPT: SPT IS LIKE

BINARY EXCEPT 1 INDICATES THAT THE POWER OF TWO BE NEGATED.

H′(z) F ′(z)

0 0.03515625 0.00001001 -0.0625 0.00010000
1 -0.0234375 0.00000110 -0.03125 0.00001000
2 -0.125 0.00100000 0.4375 0.10010000
3 0.375 0.01100000 0.78515625 0.11001001
4 0.8125 0.11010000 0.4375 0.10010000
5 0.375 0.01100000 -0.03125 0.00001000
6 -0.125 0.00100000 -0.0625 0.00010000
7 -0.0234375 0.00000110
8 0.03515625 0.00001001
K - - -
G - 1.0166015625 1.0000010001

(a) direct with gain compensation, T = 32.

H′(z) F ′(z)
S 1 001 1 001
E 4 100 4 100
C 6 110 6 110

4 100 4 100
1 1 001 1 001

S 1 0001.0000 -1 01.0000
E -4.625 0100.1010 3.3125 11.0101
C 9.6875 1010.0101 -1 01.0000

-4.625 0100.1010
2 1 0001.0000

K 0.0390625 0.0000101 0.0625 (simple shift)
G - -

(b) cascade with z1 compensation, T = 32.

structure. A polyphase structure does not perform the wasted
operations; consequently it doubles the throughput of a non-
polyphase structure.

The basic block of the analysis part of a filter bank is a
filter h[n] = (h0, h1, h2, h3, h4, h5, . . .) ↔ H(z) followed by
a downsampling operation, as shown in Fig. 2a. Separating
the odd and even powers in the transfer function we have

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 + h4z

−4 + . . .

= (h0 + h2z
−2 + h4z

−4 + . . .) +

z−1(h1 + h3z
−2 + h5z

−4 + . . .)

= He(z
2) + z−1Ho(z

2) (2)

where,

He(z) ↔ (h0, h2, h4, . . .) (even phase of h[n])

Ho(z) ↔ (h1, h3, h5, . . .) (odd phase of h[n]).

Once the even and odd powers have been separated, the
order of the downsampling operation and the filter can be ex-
changed, according to the first Noble identity [3]. The resulting
polyphase filter structure, shown in Fig. 2b, is computationally
equivalent to the original structure in Fig. 2a, but much more
efficient: it downsamples the input stream so that only the
necessary computations are performed.

A similar transformation applies to the synthesis side of
the filter bank. In the following subsections, we describe
polyphase structures for the direct form, the cascade form and
the hybrid direct-cascade form.
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A. Direct Polyphase Structure

The polyphase idea can be applied to the direct implemen-
tation of the 9/7 filter bank simply by splitting each filter
into its even and odd phases. Applying the polyphase idea
does not change the coefficients, so a direct form polyphase
implementation (direct-poly) requires the same total number
of SPT terms as the direct form without polyphase (direct-
no-poly). The advantage of a direct-poly implementation,
then, is that the throughput is doubled with no significant
change in hardware cost. The direct-poly and direct-no-poly
structures have the same effect on image compression quality.
In particular, the zeros at z = −1 will not be preserved and
reconstructed images will exhibit the checkerboard artifact.

B. Cascade Polyphase Structure

Fig. 3a shows the cascade structure (two sections H1(z)
and H2(z) and a gain of K) followed by the downsampling
operation. In applying the polyphase idea to the cascade
structure, a problem is encountered in the polyphase expansion
of H1(z), since a downsampling operation cannot exchange
places with a unit delay. We derive a polyphase structure
for the cascade form by instead considering the simultaneous
polyphase representation of both cascaded sections, H1(z)
and H2(z). By rearranging the equations, the delays can be
factored out, and then the Noble identity can be employed:

H(z) = H1(z)H2(z)

= [H1e(z
2) + z−1H1o(z

2)][H2e(z
2) + z−1H2o(z

2)]

= H1e(z
2)H2e(z

2) +

z−1[H1o(z
2)H2e(z

2) + H2o(z
2)H1e(z

2)] +

z−2H1o(z
2)H2o(z

2). (3)

The result is the cascade-poly form in Fig. 3b. The cascade-
poly form doubles the throughput of the original cascade-no-
poly form while still preserving the zeros at z = −1. However,
since each polyphase filter appears twice in the structure,
the cascade-poly implementation requires almost double the
hardware of the original non-polyphase cascade form. For
this reason, we do not consider this implementation further;
we look instead for an alternative implementation, capable of
maintaining the zeros at z = −1 and doubling the throughput
without doubling the hardware.

The underlying idea here is to use a direct-poly structure,
because it allows for double the throughput without an increase
in hardware. At the same time, we want to preserve the zeros
at z = −1. This we achieve by using coefficients that can be
represented exactly in SPT format, and for which the original
zeros at z = −1 are unperturbed.

We start with the quantized coefficients from the “cascade
with z1 compensation” method (shown in Table II(b)), and
convolve the two sections to make a single section. This
single section is mathematically equivalent to the original
cascade, but can be implemented in a direct form polyphase
implementation. The normalizing gain factor, K , remains a
separate stage. The resulting coefficients are shown in Table
III. We refer to this structure as the direct-cascade-poly form,

H(z) ↓ 2� � �

(a) non-polyphase structure

↓ 2

↓ 2

Ho(z)

He(z)
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z−1
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�

�
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(b) polyphase structure

Fig. 2. Direct form filter, analysis side.
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(b) polyphase cascade

Fig. 3. Cascade form filter, analysis side.

since it is equivalent in compression performance to the
cascade, but is a direct polyphase structure.

The number of SPT terms required for the direct-cascade-
poly form depends on the particular coefficients; in general, the
coefficients for the direct-cascade-poly structure will require
more terms than the original cascade-no-poly coefficients, but
significantly fewer terms than the cascade-poly structure. For
our example, the cascade-no-poly structure required T = 32
SPT terms, the direct-cascade-poly structure required T = 45,
and the cascade-poly structure required T = 62. The direct-
cascade-poly design method results in double the throughput
of a polyphase structure, with only a moderate increase in
hardware cost, while preserving image compression quality.

IV. RESULTS

The results represent four combinations of filter coefficient
quantization technique, form and structure: a direct form
with gain compensation in both non-polyphase and polyphase
structures (direct-no-poly and direct-poly), a cascade form
with z1 compensation in a non-polyphase structure (cascade-
no-poly), and a direct form that effectively implements cascade
with z1 compensation in a polyphase structure (direct-cascade-
poly).

We first compare image processing quality. The two quan-
tized filter coefficient sets from Table II were used to compute
a 5-level, non-expansive symmetric extension DWT of 3
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TABLE III

DIRECT-CASCADE-POLY COEFFICIENTS OBTAINED BY CONVOLVING THE

COEFFICIENTS IN TABLE II(B), T = 45.

H′(z) F ′(z)

0 1 00001.0000 -1 0001.0000
1 -0.625 00000.1010 -0.6875 0000.1011
2 -2.8125 00011.0101 6.25 0110.0100
3 10.375 01010.0110 11.875 1100.0010
4 23.125 11001.0010 6.25 0110.0100
5 10.375 01010.0110 -0.6875 0000.1011
6 -2.8125 00011.0101 -1 0001.0000
7 -0.625 00000.1010
8 1 00001.0000
K 0.0390625 0.0000101 0.0625 (simple shift)
G - -

TABLE IV

PSNR VALUES FOR IMAGES COMPRESSED USING THE QUANTIZED

FILTERS IN TABLE II.

unquantized quantized
Image Comp. (floating Direct w/ Cascade w/
Name Ratio point) gain comp. z1 comp.

8:1 28.52 28.47 28.49
Mandrill 16:1 24.96 24.93 24.96

32:1 22.81 22.76 22.79
64:1 21.36 21.26 21.47
8:1 38.21 36.98 38.22

Boat 16:1 33.66 33.08 33.57
32:1 30.28 29.95 30.12
64:1 27.70 27.52 27.51
8:1 37.61 36.29 37.73

Peppers 16:1 35.54 34.48 35.50
32:1 33.03 32.30 32.98
64:1 30.17 29.59 30.12

different grayscale images. Four compression ratios (8:1, 16:1,
32:1, and 64:1) were examined. The PSNR values are shown
in Table IV. Note that the direct-no-poly and direct-poly are
mathematically equivalent; both give the results noted in the
column marked “direct with gain compensation”. Similarly,
the cascade-no-poly and direct-cascade-poly systems both give
the results in the “cascade with z1 compensation” column.
The cascade-no-poly and direct-cascade-poly structures result
in quantized PSNR values close to the unquantized PSNR
values and significantly better qualitative results since there
is no checkerboarding.

The four structures were implemented in hardware using
filter synthesis software, written in C, to generate synthesizable
VHDL filter descriptions. The software automatically chooses
appropriate bit widths for internal signals such that errors due

TABLE V

HARDWARE PERFORMANCE FOR THE LOWPASS BRANCH OF FIGURE 1.

Non-Polyphase Polyphase
direct- cascade- direct- direct-cascade-
no-poly no-poly poly poly

SPT terms 32 32 32 45
size (logic cells) 999 1125 1474 1465
full rate (MHz) 80.09 74.94 124.26 158.80
half rate (MHz) 40.05 37.47 62.13 79.40

to truncation and overflow are completely avoided. Hardware
performance was evaluated by synthesizing the filters for
an Altera FPGA. The Altera Quartus version 2.1 software
package is used for logic synthesis, placement and routing
on an Altera EPF20K30EFC144-1X FPGA, a member of the
APEX family. The Quartus software is used to analyze critical
path delays, and to determine hardware size, measured here
in terms of number of Altera logic elements.

Table V summarizes the hardware performance of the low-
pass branch of the filter bank: H ′(z) and F ′(z). For the non-
polyphase filters, the cascade form filter is slightly larger than
the direct form filter. Even though both systems have T = 32,
breaking a filter into sections implies a larger total number of
filter coefficients—and therefore more registers. Both systems
operate at approximately the same rate.

The polyphase systems have roughly twice the throughput
of the non-polyphase systems. The direct-cascade-poly system,
with T = 45, is both smaller and faster than the direct-
poly system, with T = 32. This is because T (essentially
the number of word-level adders in the system) is not a
direct measure of hardware; the bit widths of the word-level
adders must also be considered. A significantly larger number
of bits must be carried in the direct-poly system to avoid
truncation effects. The direct-cascade-poly structure is clearly
the superior hardware implementation in terms of throughput
and compression quality.

V. CONCLUSIONS

The underlying structure of a biorthogonal filter bank plays
a crucial role not only in the filter bank’s performance and cost
from the hardware perspective, but also in its performance
from the image compression perspective. A polyphase filter
bank structure is highly desirable from a hardware perfor-
mance perspective because of its high throughput. The cascade
form is highly desirable from an image compression perspec-
tive, but it results in exorbitant hardware cost if represented as
a cascade polyphase structure. The proposed direct-cascade-
poly design technique shows how to obtain a polyphase
structure that requires only a moderate amount of hardware
while preserving compression quality.
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