
PARAMETERIZED AND ENERGY EFFICIENT ADAPTIVE BEAMFORMING ON FPGAS
USING MATLAB/SIMULINK ∗

Jingzhao Ou, Viktor K. Prasanna

Electrical Engineering - Systems
University of Southern California, Los Angeles, CA 90089

Emails: {ouj,prasanna}@usc.edu

ABSTRACT

Adaptive beamforming is widely used in many sonar and
telecommunication systems. FPGAs are attractive for im-
plementing these applications. In this paper, we develop pa-
rameterized designs and identify energy efficient FPGA im-
plementations for adaptive beamforming applications using
MATLAB/Simulink based system-level design tools. Ex-
perimental results are given to show that up to 51% energy
reduction can be achieved using our design approach.

1. INTRODUCTION

An adaptive beamforming system combines the signals re-
ceived from multiple antenna elements and forms pencil
beams adaptively in response to the signal environment so
as to receive a source signal radiating from a specific direc-
tion and to attenuate signals originating from other direc-
tions that is of no interest. One important use of adaptive
beamforming systems is in the area of software defined ra-
dio (SDR) [4], where they are used to improve system ca-
pacities of the base stations. Adaptive beamforming sys-
tems demand multiple orders of magnitude data process-
ing abilities than single-antenna systems, in which adaptive
beamforming is not employed. Different wireless commu-
nication protocols require different implementations of the
adaptive beamforming systems. Thus, parameterized hard-
ware designs of adaptive beamforming are desired. More-
over, many wireless systems using SDR are energy con-
strained while the high data processing requirement of adap-
tive beamforming consumes much energy.

Large densities of recent FPGAs have enabled the devel-
opment of complex digital signal processing applications
using them. Especially, FPGAs are an attractive option for
implementing adaptive beamforming in SDR due to their
high performance, low power dissipation per unit computa-
tion, and reconfigurability [4].

MATLAB/Simulink based design tools, such as DSP
Builder [1] from Altera and System Generator [8] from
Xilinx, are becoming popular for developing digital sig-
nal processing applications on FPGAs. In System Gener-
ator, IP (Intellectual Property) cores and HDL (Hardware

∗SUPPORTED BY THE DARPA POWER AWARE COMPUTING AND COM-
MUNICATION PROGRAM UNDER CONTRACT NO. F33615-C-00-1633.

Description Language) designs are made available through
the block set within System Generator. The user assembles
a design by using the blocks from the block set and con-
necting them via a GUI. After the design is completed, it
is automatically translated into the corresponding HDL im-
plementation. Testbenches are also automatically generated
for hardware simulation and verification.

There are two major advantages offered by these tools.
One is that there is no need to know HDLs. This allows
researchers and users from the signal processing commu-
nity, who are usually familiar with MATLAB/Simulink and
unfamiliar with HDL, to get involved in the hardware de-
sign process. The other advantage is that the designer can
make use of the ability of MATLAB/Simulink to perform
arithmetic-level simulation, which is much faster than be-
havioral and architectural simulations in traditional FPGA
design flows.

However, there are several limitations in using the current
MATLAB/Simulink design flow to develop adaptive beam-
forming applications as more emphasis is placed on the en-
ergy efficiency of their implementations. One is that the cur-
rent versions of the tools have no support for rapid energy
estimation of FPGA based designs. Due to lack of a high-
level architecture as that of general purpose processors, en-
ergy estimation of FPGA designs requires techniques such
as domain-specific modeling proposed in [2]. Accurate es-
timation using RTL (Register Transfer Level) simulation is
too time consuming and can be overwhelming considering
the fact that there are usually many possible implementa-
tions of an application on FPGAs. Another limitation is
that these tools do not provide an interface for traversing
the MATLAB/Simulink design space and help the users to
identify energy efficient designs while the design require-
ments are satisfied.

We have developed an add-on tool of MAT-
LAB/Simulink, called PyGen, the architecture of which
is discussed in [6]. Using this tool, MATLAB/Simulink
designs can be described using Python scripting language
[7]. The contribution of this paper is in the use of PyGen
to develop parameterized MATLAB/Simulink designs
and identify the designs that lead to energy efficient
implementations of adaptive beamforming applications
on FPGAs. While our approach can be applied to any

V - 1810-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

MATLAB/Simulink based design tool, System Generator
[8] is used due to tool availability.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses our design flow using System Generator
and PyGen. Section 3 presents the development of an
MVDR (Minimum Variance Distortionless Response) adap-
tive beamforming application using this design flow. The
performance of various designs is also given in this section.
Finally, we conclude in Section 4.

2. A MATLAB/SIMULINK BASED DESIGN FLOW

Our design flow is shown in Figure 1. The shaded blocks
correspond to the four major additional functionalities pro-
vided by PyGen to the original System Generator design
flow. These are: (1) support for development of parameter-
ized designs; (2) rapid energy estimation using techniques
in [2]; (3) profile of energy dissipation of a design; (4) opti-
mization of designs for energy efficiency.

We begin by describing our designs either in PyGen or
directly in the GUI provided by System Generator. Parame-
terized designs are developed in the form of Python classes.
By instantiating these classes and generating Python objects
with the desired parameters, PyGen automatically creates
the corresponding System Generator designs. For example,
instantiating a Python class Mult()with n_bits=18 has
the same effect as dragging a multiplication block into the
design and setting its number of bits to 18 with the other
parameters taking their default values. A complete design
usually contains a hierarchy of such Python objects. Using
the arithmetic simulation ability of MATLAB/Simulink, we
can quickly debug and verify the correctness of our designs.

A performance model is associated with each generated
Python object. Input to these performance models are
their settings in the design and test data from the previ-
ous Simulink simulation. Design constraints, such as la-
tency, throughput, and available hardware resources (num-
ber of slices, dedicated multipliers and Block RAMs for
Xilinx FPGAs), are also described in PyGen. Then, based
on the performance models and the design constraints, Py-
Gen performs optimization by automatically instantiating
the Python classes with different parameters, estimating and
comparing their performance, and ensuring that the design
constraints are satisfied. Finally, using System Generator,
an HDL implementation of the final design that achieves
maximum energy efficiency is generated. By going through
the usual FPGA synthesis and place-and-route process, this
HDL implementation can be translated into bitstreams and
downloaded to the device.

The design flow can be iterative. Relying on tools such as
XPower [8], PyGen can analyze the results from low-level
simulation and generate the profile of energy dissipation of
a design. Such profiling results can be used to improve the
accuracy of the performance estimation.

Fig. 1. Design Flow

3. DESIGN OF AN MVDR ADAPTIVE
BEAMFORMING APPLICATION

3.1. MVDR Beamforming

We consider an LMS (Least Mean Squares) based MVDR
adaptive beamforming application studied in [5]. It con-
sists of two tasks: filtering which performs the calculation
specified in Equation (1), and updating of the coefficients of
the filter, which performs the calculation specified in Equa-
tion (2).

y(n) = WH(n′) · X(n) (1)

W (n′ + 1) = W (n′) − µ·y∗(n)·
(

X(n) − UH·X(n)·U
UH ·U

)

(2)

where, X(n) is a vector that represents the input data
samples, y(n) is the filter output, W (n′) is a vector that
represents the coefficients of the filter, µ is the step-size pa-
rameter, and U is the steering vector. The size of the vectors
is decided by the number of antenna elements employed by
the antenna system. Updating of the filter coefficients are
not required for each set of input data. The filtering task
and the updating task can run at different speeds. Also, we
assume that the beamforming is performed before modula-
tion and thus uses complex number operations.

3.2. Parameterized Designs

The parameterized design of the beamforming application
is implemented as a Python class MVDR(). The input pa-
rameters to this class are decided by the beamforming al-
gorithm, the hardware architectures used, and the design re-
quirements. They are spdFiltering (operating speed of
filtering), spdUpdate (operating speed of coefficient up-
dating), n_bits (number of bits), bin_pt (binary point
position), degParFiltering (degree of parallelism for
filtering), degParUpdate (degree of parallelism for coef-
ficient updating), dedMultFiltering (number of ded-
icated multipliers used in filtering), dedMultUpdate

V - 182

➡ ➡

(number of dedicated multipliers used in coefficient updat-
ing), sVec (vector size), mu (step size µ), U (steering vec-
tor).

The MVDR() class contains two Python classes,
Filtering() and Updating(), which implement the
filtering task and the coefficient updating task, respectively.
Input to class Filtering() is: spdFiltering,
n_bits, bin_pt, sVec, degParFiltering,
and dedMultFiltering, while input to class
Updating() is: spdUpdate, n_bits, bin_pt,
degParUpdate, dedMultUpdate, sVec, and
U. When MVDR() is instantiated, Filtering(),
Updating(), and the classes contained by them, are
also instantiated with the corresponding parameters. Then,
PyGen converts the instantiated Python objects into the
corresponding designs in System Generator.

We consider the design requirement specified in [3],
which demands a throughput of more than one million data
samples per second and a data precision of more than 14 bit
to ensure the performance of the beamforming algorithm.
Under this requirement, we analyze the performance models
associated with the multipliers and the adders and conclude
that: due to the availability of dedicated multipliers, multi-
plication is more energy efficient than addition/subtraction
under the design requirement in [3]. Thus, a four-multiplier
architecture, instead of a three-multiplier one, is used for
complex multiplication. Similarly, by comparing the com-
putation costs and the storage costs, UH ·U is computed at
compile time and is stored in the Block RAMs on the device.
We do not provide parameters to change the architecture of
these modules.

Besides, even though operating speeds of the tasks are
parameterized, there are issues in simulating them. Since
filtering and coefficient updating are operating at differ-
ent speeds, their hardware implementations are placed into
different clock domains on Xilinx FPGAs. This is im-
plemented using DCM (Digital Clock Management) mod-
ules on the device. However, simulation of multiple clock
domains is not supported by the current version of MAT-
LAB/Simulink. Thus, we must use the same operating
speed for both the filtering task and the coefficient updat-
ing task when performing arithmetic simulation in MAT-
LAB/Simulink. We set them to their actual operating speeds
before we translate the design into HDL implementations.
The HDL implementations of these two modules are gen-
erated using System Generator. After that, the MVDR()
class generates a top-level HDL code that combines the two
implementations according to their actual operating speeds.
The MVDR() class also combines the testbenches generated
by System Generator and generates a top-level HDL test-
bench code for simulation.

3.3. Energy Estimation and Profiling

Referring to the design requirements in [3], we set
n_bits=16, bin_pt=6. There are eight antenna ele-
ments in the system and thus sVec=8. Besides, the design

constraints are: the incoming data rate is 100 million sam-
ples per second per antenna element; the execution rate of
the coefficient updating task can be much slower than that
of the filtering task; there are 5120 slices, 40 18x18-bit ded-
icated multipliers, and 40 BRAMs on Virtex-II xc2v1000
FPGA, our target device.

Since the filtering task needs to process each set of data
samples and demands a large amount of computation power,
we set degParFiltering=8. Thus, if it runs at 100MHz
(spdFiltering=100), it can support the specified input
data rate. Since increasing the degree of parallelism of
a design greatly increases the required resources, by esti-
mating the area requirement of the two tasks and compar-
ing it with what is available on the target device, we set
degParUpdate=1.

We provide the above settings and test data from
Simulink simulation to the performance models associated
with all the objects in the designs. By summing up the out-
put from these models, we obtain coarse estimates of the
performance of various designs, which are shown in Fig-
ure 2. The input to the beamforming application is stream-
ing data. Also, our design is pipelined and all the modules
are active throughout the processing. Therefore, the energy
efficiency of a design is measured as its average power con-
sumption.

32 28 24 20 16
0

500

1000

1500

2000

2500
 A

ve
ra

ge
 p

ow
er

 d
is

si
pa

tio
n

(m
W

)

 Number of dedicated multipliers used

 Measured →

 Coarse estimates
 Refined estimates

Fig. 2. Estimates of various designs for the filtering task

Clock: 5%Adder tree: 6%

Communication: 13%

Complex multiplication: 77%

Fig. 3. Energy profile of the first design in Figure 2

Since the performance models only account for the en-
ergy dissipation of the FPGA modules represented by them,
the coarse estimates do not capture the communication costs
for sending data between the modules. For example, they do

V - 183

➡ ➡

not capture the energy dissipation for sending data from the
I/O pads to the filtering task and that for sending data from
the filtering task to the updating task. Using the coarse esti-
mates, we identify several good candidate designs with low
energy dissipation. For each of these designs, we perform
low-level simulation, profile its energy dissipation, and use
this information to refine the coarse energy estimates. Fig-
ure 3 shows that the communication costs mentioned above
can account for 13% of the total energy dissipation. We
use these profiling results to update the coarse estimates and
obtain refined estimates. The average accuracy of our esti-
mates is improved from 17.4% to 9.4% for the five designs
shown in Figure 2 by comparing their estimates and the re-
sults from low-level simulation (the Measured data). We
have performed similar estimates and analysis for the up-
dating task. They are not included in this paper due to space
limitation.

3.4. Optimization for Energy Efficiency

The Case 1 in Figure 4 shows the performance of various
designs when the filtering task runs at 100 MHz and the co-
efficient updating task runs at 50 MHz (spdUpdate=50).
The labels for the X axis show the numbers of dedicated
multipliers used by the designs. For example, “32+7”
represents a design with dedMultFiltering=32 and
dedMultUpdate=7. Due to the latency caused by the
design of the coefficient updating task, this means that the
coefficients of the filter are updated once every 16 samples.
The Case 2 in Figure 4 shows the performance of differ-
ent designs when spdFiltering=spdUpdate=100, in
which the coefficients are updated once every 8 samples.

Note that from the estimates, the most energy
efficient designs for the two tasks are those with
dedMultFiltering=32 and dedMultUpdate=11,
respectively. However, these two designs cannot fit into our
target device simultaneously. Thus, their combination is ig-
nored in the optimization process. Also, quiescent power
(power consumption of the device when there is no switch-
ing activity on it) and the output power from the I/O pads
are not shown since they are fixed once the target device
and the output data requirements are determined and cannot
be optimized in our design flow.

We can see from our results that, under different applica-
tion requirements, the most energy efficient designs are dif-
ferent. In Figure 4, the design labeled as “32+7” for Case 1
and the design labeled as “28+11” for Case 2 have the least
amount of average power consumption, respectively. This is
because as rate of updating the coefficients increases, more
computation is performed by the updating task. We need
to allocate more energy efficient resource such as dedicated
multipliers to the updating tasks in order to improve energy
efficiency. Considering the four candidate designs shown in
Figure 4, up to 51% energy reduction can be achieved by
doing so.

32+7 28+11 24+11 20+11
0

500

1000

1500

2000

A
ve

ra
ge

 p
ow

er
 d

is
si

pa
tio

n
(m

W
)

Number of dedicated multipliers used

Filtering
 Updating

Case 1

32+7 28+11 24+11 20+11
0

500

1000

1500

2000

A
ve

ra
ge

 p
ow

er
 d

is
si

pa
tio

n
(m

W
)

Number of dedicated multipliers used

 Filtering
 Updating

Case 2

Fig. 4. Energy efficiency of various designs on Xilinx
Virtex-II xc2v1000 FPGA (Case 1: filtering at 100 MHz
while updating at 50 MHz; Case 2: both at 100 MHz)

4. CONCLUSION AND FUTURE WORK

Development of an energy efficient adaptive beamforming
application on FPGAs using a MATLAB/Simulink based
design flow is presented in this paper. Our technique can
also be applied to the development of other adaptive beam-
forming applications, such as QR-based RLS (Recursive
Least Squares) adaptive beamforming. They use more com-
plex algorithms and offer more design trade-offs.

5. REFERENCES

[1] Altera, Inc., http://www.altera.com.
[2] S. Choi, J.-W. Jang, S. Mohanty, V. K. Prasanna,

“Domain-Specific Modeling for Rapid System-Wide
Energy Estimation of Reconfigurable Architectures,”
Engr. of Reconf. Systems/Algorithms (ERSA), 2002.

[3] M. Devlin, “How to Make Smart Antenna Arrays,”
Xilinx XCell Journal, Issue 45, 2003.

[4] C. Dick, “The Platform FPGA: Enabling the Software
Radio,” Software Defined Radio Technical Conference
and Product Exposition (SDR), 2002.

[5] S. Haykin, Adapt. Filter Theory, Prentice Hall, 2002.
[6] J. Ou, S. Choi, G. Govindu, and V. K. Prasanna,

“Creating Parameterized and Energy-Efficient System
Generator Designs,” Military & Aerospace Applica-
tion of Prog. Logic Devices (MAPLD), 2003.

[7] Python, http://www.python.org.
[8] Xilinx, Inc., http://www.xilinx.com.

V - 184

➡ ➠

