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ABSTRACT

In this paper, a novel 2-D IDCT architecture based on the

energy compaction property of 2-D DCT is proposed.

This architecture performs 2-D IDCT directly on the 2-D

DCT data set, avoiding the need for the transposition

memory. We derive a recursion equation from the

definition of the 2-D IDCT algorithm and use it to

implement a wavefront array processor. The wavefront

array processor consists of highly regular, parallel and 

pipelined processing elements which are suitable for VLSI 

implementation. This implementation also utilizes the

sparseness property of the 2-D DCT coefficients to reduce 

the computational complexity. It is shown that the

proposed architecture achieves a high throughput rate,

clock cycles per 2-D DCT data set, where m is

the number of the non-zero DCT coefficients. Another

important aspect of this architecture is that it provides an

efficient way to control the trade-off between visual 

quality of the reconstructed image and computational

complexity.
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1. INTRODUCTION 

Due to the decorrelation and energy compaction

properties of DCT [1] for typical image and video data,

most of the current image/video standards, such as JPEG, 

H.26x and MPEG family, use discrete cosine transform

(DCT) to remove spatial redundancies. DCT and inverse

DCT (IDCT) are computationally intensive algorithms. Its 

direct computation of 2-D N DCT (IDCT) requires 

multiplications, which need efficient VLSI

architecture to meet the constraints of various real-time

applications.
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Many researchers have proposed a large number of 

efficient DCT/IDCT architectures, such as fast algorithm-

based designs, multiplier-based designs, adder-based

designs, memory-based designs and so on. Most of the

above design approaches use a row-column

decomposition method [2]. 2-D DCT (or 2-D IDCT) is

decomposed into two separate 1-D DCT’s (or 1-D 

IDCT’s). That is, the row (or column) data are processed

using 1-D DCT (or 1-D IDCT) first and results are stored

in the transposition memory. Then, its column (or row)

data are processed again using 1-D DCT (or 1-D IDCT),

which yields 2-D DCT (or 2-D IDCT) results. This row-

column decomposition scheme is shown in Fig. 1. Since

many existing 1-D DCT (or 1-D IDCT) techniques can be 

applied directly, this approach has been widely used. But

its disadvantage is that the fast transposition circuit, in

general, occupies large area of the chip [3]. There are 

other approaches which perform 2-D DCT (or 2-D IDCT)

directly on the 2-D data set with less number of

multiplications [4, 5]. These algorithms often need direct

mapping of complex signal flow graphs to the

corresponding hardware components, which increases

implementation complexity of VLSI circuits.

In this paper, we propose a novel 2-D IDCT

architecture based on the energy compaction property of

2-D DCT. The energy compaction property has also been

shown to be useful in designing an architecture for the

motion estimation algorithm in [6]. The focus of this work

is on utilizing this property for 2-D IDCT implementation

and comparing its performance with other 2-D IDCT

architectures. The rest of this paper is organized as 

follows. In Sections 2 and 3, the decorrelation and energy

compaction properties of 2-D DCT are briefly explained

and a recursion equation from the 2-D IDCT definition is

derived. Further, we present a novel architecture for 2-D

IDCT. In Section 4, we show that the proposed 2-D IDCT

architecture can achieve a higher throughput rate with low

initial delay as compared with other 2-D IDCT 

architectures. In Section 5, we briefly summarize our 

work and conclude the paper. 

2. PROPOSED ALGORITHM 

For a given 2-D spatial data sequence x ,),( ji

1,0 Nji

,(uX

, the corresponding 2-D DCT data

sequence ,)v 1,0 Nvu , is defined as 
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Fig. 1. Row-column decomposition approach 
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(a) 2-D spatial data                  (b) 2-D DCT data 

Fig. 2. Examples of 2-D spatial and 2-D DCT data1
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In this paper, a new 2-D IDCT architecture to fully 

utilize the energy compaction property and the sparseness

property of the 2-D DCT data matrix, X is proposed. Let

be the matrix entry in the m row and the n

column of the 2-D DCT data matrix

),( nmX th th

X and the row 

vector  be the row of the DCT matrix T .

Therefore, the equation (6) can be represented as 

)(nT thn

N

vj

2
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cos                                         (1) 

where
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cos                                          (3) Equation (7) can be written in zig-zag scan order as 

follows,
Therefore,  DCT matrix , where 

represents the matrix entry in the m row and the

 column, is given by
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)7()7()7,7()6()7()6,7(....... TTXTTX tt       (8) 

The 2-D spatial data matrix x  in eq. (8) can be considered

as linear combinations of basis images which are obtained

by “outer product” of the column vector T  and the

row vector T . This interpretation of eq. (8) can make

it easier to manipulate the sparseness of the 2-D DCT data

matrix

tm)(

)(n

X to calculate the 2-D spatial data matrix x , as 

explained in Section 3. It indicates that the trade-off 

between visual quality of the reconstructed image and

computational complexity can be controlled by using only

portions of the weighting factor matrix X , (i.e., different 

number of elements from X ). More elements are 

chosen for higher quality, while a smaller number is

preferred for reducing the computational complexity.

), nm(

The 2-D DCT and 2-D IDCT can be written in a matrix

form as 
tTxTX                                       (5) 

XTTx t                                       (6) 

The case of N is considered, since image and video 

compression standards use 8 block for 2-D DCT and

2-D IDCT operations. Since the basis vectors of the DCT

are orthogonal, IDCT can be easily obtained, as shown in

eq. (6). Due to the similarity between eq. (5) and eq. (6), 

the previous architectures developed for DCT by many

researchers, have been also used for IDCT operations. But 

2-D spatial data matrix

8

8

x and 2-D DCT data matrix X

have different signal characteristics. DCT transforms

highly correlated image into a few transform coefficients, 

as shown in Fig. 2. Moreover, the conventional

image/video coding techniques use quantization process 

to achieve higher compression ratio. Therefore, the 2-D

DCT data matrix X  has a few non-zero coefficients in the

low frequency zone, which makes it possible to design

more efficient IDCT architecture than the previous DCT-

based IDCT architectures [9]. 

3. IMPLEMENTATION OF THE PROPOSED 

ALGORITHM

2-D IDCT algorithm is implemented with wavefront array

processing architecture as shown in Fig. 3. The values of 

IDCT kernels enter the top and the left sides of the

proposed architecture. The data movement propagates

from the top-left corner to the bottom-right corner of the

processing elements. These computational wavefronts are
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Fig. 3. Implementation of the proposed 2-D IDCT architecture

Table 1. Operations of PEs 

PE(0,0) PE(0,1) PE(0,2)

1 )0,0(1x )0,0()0,0()0,0( TTX

2 )0,0(2x )0,1()0,0()1,0()0,0(1 TTXx )1,0(1x )1,0()0,0()0,0( TTX

3 )0,0(3x )0,0()0,2()0,2()0,0(2 TTXx )1,0(2x )1,1()0,0()1,0()1,0(1 TTXx )2,0(1x )2,0()0,0()0,0( TTX

4 )1,0(3x )1,0()0,2()0,2()1,0(2 TTXx )2,0(2x )2,1()0,0()1,0()2,0(1 TTXx

5 )2,0(3x )2,0()0,2()0,2()2,0(2 TTXx

For example, let us examine how 2-D IDCT is 

performed by fully utilizing the sparseness property of the

2-D DCT data matrix X . Let the 2-D DCT data matrix

X have the following non-zero elements after

quantization process. 

pipelined on the processing elements array to achieve a 

high throughput rate. In the proposed architecture, one

wavefront corresponds to one mathematical recursion, i.e.,

one “outer product” of the column vector T  and the

row vector T , scaled by the non-zero DCT coefficient

. Therefore, successive pipelining of the

computational wavefronts through the processing

elements will provide 2-D IDCT results from low visual

quality of the image to high visual quality of the image,

according to the number of the mathematical recursions as 

shown in eq. (9). 
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The data flow of the 2-D IDCT operations using this

example is indicated in Fig. 3. Each pipelined wavefront
)()(),(1 nTmTnmXxx tkk                   (9) 

V - 179

➡ ➡



Table 2. Performance comparison of the different 2-D IDCT architectures 

Ma [7] Lim [8] Chang [9] Proposed

Algorithmic Approach 
Row-column

decomposition

Row-column

decomposition

Row-column

decomposition

Direct 2-D 

algorithm

No. of Multipliers )1(4 NN NN NN )1(NN

Transposition Memory No No No No

Total cycles per 2-D IDCTNN 2N N2 N m

I/O Ports 
Serial In 

Parallel Out

Parallel In

Parallel Out

Parallel In

Parallel Out

Serial In 

Parallel Out

  m : the number of the non-zero elements of the 2-D DCT matrix X
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Fig. 4. Average number of non-zero DCT coefficients per 

 block vs. quantization parameter88

performs one outer product, scaled by the non-zero DCT

coefficient and the recursion in eq. (9) gives the

final results of the 2-D IDCT in eq. (8). Table 1 shows a

representative set of PEs and the operations that they

perform.

),( nmX

4. PERFORMANCE COMPARISON 

For the experiment, H.263 video encoder is used. Fig. 4

shows the example of the average number of non-zero 

DCT coefficients per 8 block in the I and P frame

coding mode. It becomes more apparent that fewer DCT

coefficients survive after quantization process in the P 

frame coding. As the quantization parameter increases, the

number of the non-zero DCT coefficients also decreases

rapidly. Therefore, the proposed architecture can provide

a high throughput rate with the pipelined processing

elements, since only non-zero elements of the 2-D DCT

data matrix

8

X are used to perform 2-D IDCT. The total

processing time required for 2-D IDCT is (  clock

cycles, where 15 clock cycles are the initial delay and m is 

the number of the non-zero elements of the matrix

)15 m

X .

The performance of the proposed 2-D IDCT architecture

is compared with other 2-D IDCT architectures, as shown 

in Table 2. The proposed serial-in, parallel-out

architecture gives high performance comparable to 

parallel-in, parallel-out architectures.

5. CONCLUSION 

A novel architecture for 2-D IDCT is proposed. Pipelined

array processor achieves a high throughput rate by fully

utilizing the sparseness property of the 2-D DCT data

matrix X . It does not require the transposition memory

and consists of highly regular, parallel and pipelined

processing elements which are suitable for VLSI

implementation. Another important aspect is that this

architecture can provide very efficient way to control the

trade-off between visual quality of the reconstructed

image and computational complexity by using different

number of the non-zero DCT coefficients, .),( nmX
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