
AN LDPC DECODING SCHEDULE FOR MEMORY ACCESS REDUCTION

Kiran Gunnam, Gwan Choi, Mark Yeary*

 Dept. of Electrical Engineering, Texas A&M University, College Station, TX-77840
*ECE Dept., University of Oklahoma, Norman, OK-73109

ABSTRACT

 Recent research efforts based on joint code-decoder
design methodology have shown that it is possible to
construct structured LDPC (Low Density Parity Check)
codes without any performance degradation. An
interesting new data independence property between the
two classes of messages viz. check to bit and bit to check
involved in decoding, is observed. This property is a
result of the specific structuring of parity check matrix.
By exploiting this property, we propose an architecture in
which the computation of messages is synchronized such
that each class of messages is consumed immediately by
the computational unit for another class of messages. The
internal memory of the check to bit units is increased in
tune with the storage requirement of the check to bit
messages. The separate memories for check to bit and bit
to check messages are eliminated. This approach has
memory savings of 75% and reduces the overall memory
accesses by 66%.

1. INTRODUCTION

 Low-Density Parity Check (LDPC) codes and Turbo
codes are among the best known near Shannon limit codes
[1]. LDPC decoding algorithm has more parallelization
when compared to the decoding algorithm of Turbo
codes. The major issues surrounding the VLSI
implementation of LDPC decoders are the complex
interconnects and large memory requirements due to the
sparse nature of the parity generator matrix [2-3]. This
paper proposes low complexity architecture with reduced
memory requirements for LDPC decoding based on the
recent work on structured LDPC codes [4-7].

LDPC codes can be described by an parity
check matrix H in which the average number of non-zero
elements (i.e. one in GF2) in each row is a constant. In a

regular code, each of the bit nodes

nm

cr, n
nbbb ...,, ,21

has connections to r check nodes and each of the
check nodes

m
mccc ...,, ,21 has connections to bit nodes.

LDPC codes can be decoded by the Gallager’s iterative
belief-propagation (BP) algorithm [1].

c

 The rest of the paper is organized as follows. Section 2
explains the code construction used and the relevant
decoding schedule property which is exploited in the new
architecture. Section 3 presents architecture to eliminate
the message storage and Section 4 presents comparison
with the existing work.

2. DECODING SCHEDULE

2.1. Code Design
We focus on the construction which structures the

parity check matrix H into blocks of matrices such

that: 1. a bit in a block participates in only one check
equation in the block and 2. each check equation in the
block involves only one bit from the block. We show that
this specific construction for codes having short block
length (~2K bits) has some interesting properties which
are not exploited in the previous art.

pp

 One method to perform this construction is through
cyclotomic cosets [7]. Another method is to achieve this
property by employing random bit filling algorithm (for
low rate codes such as rate ½ codes) and geometric
constructions (for high rate codes such as rate 8/9 codes)
[5, 6]. The work [7] reports no performance degradation
for a (3, 5) - LDPC code of length 1055, rate 0.4;
constructed from cyclotomic cossets. The work [5] reports
a minimal performance degradation up to 0.2 dB for a (3,
6) - LDPC code of length 2040, rate 0.5; constructed with
random bit filling algorithm and when the “parallelization
factor” [5] is set to p=2040/6=340 (the case of our
interest). The work [6] reports a minimal performance
degradation up to 0.2 dB for a (3, 30) - LDPC code of
length 2070, rate 0.9; constructed with geometric methods
and when “parallelization factor” [5] is set to
p=2070/30=69 (the case of our interest).

The H matrix can be constructed with filling with
matrices obtained by permuting identity matrix by the
appropriate shift coefficients [7]. Say

kjB , ckrj ,..2,1;..2,1 is a pp matrix, located at

the block row and block column of H matrix. The

scalar value denotes the shift applied to

identity matrix to obtain the block, , and

thj
thk

),(kjs

ppI
thkj),(

kjB ,

V - 1730-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

the rows in the identity matrix are cyclically shifted

to the right positions for

.

ppI

),(kjs
1,...,2,1,0),(pkjs

 Let us define as a S rc shift coefficient matrix in

which . (1)),(, kjsS kj ckrj ,..2,1;..2,1

So an H matrix, in this construction, can be completely
characterized by these two simple matrices viz. and

.To define H matrix, we start with fixing

ppI

rcS rc, and

finding an appropriate and shift coefficient matrix

such that the BER performance is maintained when
compared to a random construction.

p S

 For example if and the use of

cyclotomic cosets [7] results in the following shift
coefficient matrix for the code of length

3,5 rc 211p

)(1055 cpn .

 (2)

17411675507

14411396645

16514211032

53S

The resulting H matrix has same BER performance when
compared to a similar code with random construction [7].

2.2. Block Message Independence Property
 The reliability messages used in Gallager’s Belief
Propagation algorithm can be computed in two phases viz.
check node processing (3) and bit node processing (4) and
this is repeated iteratively till the decoding criterion is
satisfied [1,3]. The message passing equations are given
by

),(.,

][

1][' ,'
1

, bicjQQR cjbi

ccjRow

cjRowi
cjibicj

 (3)

)(,

][

1][' ,', biRRQ bicj

rbiCol

biColj
bijcjbi

 (4)

where

bicjR , is the message from check to bit , is

the message from bit to check

,

jc ib cjbiQ ,

ib jc

2/tanhlog()(xx is the Gallager’s function which

is invariant under its inverse, bicj, is and is given by1

][

][' ,', 1.sgn.sgn, cjRow

cjRowi
cjicjbi QQbicj (5)

11][cjRow for codes constructed with even parity. bi

is the intrinsic reliability metric of bit i . ccRow j ...1

() gives the locations of bits (checks)

connected to the check node (bit node).

rbCol i ...1

jc ib
We can represent R and Q messages by the following

matrices for deriving the new data independence property.

This arrangement is similar to physical message storage
employed in [3] except that these matrices are not really
stored in the proposed architecture.

]][[,]1][[,]1][[,

]][2[,2]2][2[,2]1][2[,2

]][1[,1]2][1[,1]1][1[,1

...

::::

...

...

crpRowrprpRowrprpRowrp

cRowRowRow

cRowRowRow

RRR

RRR

RRR

Rm

]][[,]2][[,]1][[,

]][2[,2]2][2[,2]1][2[,2

]][1[,1]2][1[,1]1][1[,1

...

::::

...

...

rcpColcpcpColcpcpColcp

rColColCol

rColColCol

QQQ

QQQ

QQQ

Qm

 (6)

If we employ the partitioning of H matrix into r rows
and c columns of p x p matrices, the R and Q messages in
a p x p block can be processed simultaneously. The recent
architectures [4, 5, 6 and 7] exploit this property to store
messages in the memory partitioned into p independent
memory banks and employ p copies of message
computation units.

We now represent the R and Q messages in a p x p
block as p x 1 vectors

T
kpjpkpjlkpjkj RmRmRmR ,)1(,,)1(,)1(1, ...,,...,

T
jpkpjpkljpkjk QmQmQmQ ,)1(,)1(,)1(1, ,...,,...,

pl ,...,2,1 ckrj ,...,2,1,,...,2,1 (7)
Then R and Q messages in block matrix format are:

crrr

c

c

RRR

RRR

RRR

R

,1,1,

,21,21,2

,12,11,1

...

::::

...

...

rccc

r

r

QQQ

QQQ

QQQ

Q

,1,1,

,21,21,2

,12,11,1

...

::::

...

...
 (8)

Now the Gallager’s equations can be written as

 (9)
jk

jks
jk

jks
jk

c

k
kj QQR ,

),(
,

),(
,

1
, .

k
kjs

kj

r

j

kjs
kjjk RRQ),(

,
1

),(
,,

 (10)

r

k

jk
jks

jkjk QQ
1

,
),(

,, sgn.sgn (11)

pkppkk)1(,...,)1(1 (12)

where),(
,

jks
jkQ (),(

,
kjs

kjR) is the modified p x1 vector

jkQ ,
(

kjR ,
), whose elements are circularly shifted in

location by the amount ().),(jks),(kjs

Say),(
,

1

jks
jk

c

k
j QA ,),(

,,
jks

jkjk QB (13)

r

j

kjs
kjk RC

1

),(
,

,),(
,,

kjs
kjkj RD (14)

Now

jkjkjkj BAR ,,, . (15)

V - 174

➡ ➡

kkjkjk DCQ ,,
 (16)

Observation
 We can observe that the block row of R messages

is only dependent on the block column of Q messages

and similarly the block row of Q messages is only

dependent on the block column of R messages. Only
one class of messages has to be stored if we schedule the
pipeline of the R and Q message computation unit such
that the either one of R and Q message units output the
block row at once and multiplexing the other units
schedule such that it is able to produce the output in block
column fashion.

thj
thj

thk
thk

f

 If Check to Bit serial message computation units,

which have internal FIFOs of size
p

11rc rc.
are employed, this is approximately equivalent to storage
requirement of one class of messages . We do not

need any additional memory for storing R and Q
messages. By scheduling we can efficiently use the
internal memory of the computational units.

rcp ..

3. ARCHITECTURE

For the example (3, 5) - LDPC code of length 1055
described in section 2, 3r , and5c 211p . We can

generalize the following discussion to any LDPC code
with similar structure.

According to the observation made in Section 2, the
pipeline is designed such that Q messages are produced
block row wise and R messages are produced in block
column fashion. Initially the Q messages are available in
row wise as they are set to soft log likelihood information
of the bits coming in chunks of (10). The Q Initializer
(Q Init) is an SRAM of size and holds the

p

pn values
of two different frames. It can supply intrinsic values to
the BCUs each clock cycle and also can simultaneously
read intrinsic values from the channel at the start of
iterations of the next frame. The data path of the design is
set to 5 bits.

p

p

 and 1 are implemented with identical

SRAM lookup tables The maximum number of iterations
is set to 20 and the iterations will stop when the decoded
vector (using Majority function of Bit to check

messages)satisfies the relation .

d

0TdH
The p by p interleaver is constructed with two input -

two output switches and stages of switches
are used. The Switching Sequence (SS) memory contains
the binary sequences to toggle switches in order to
produce the shifts in the matrix (2). While the

interleaver of Q messages will receive sequences column
wise (2, 5, 7, 3… 174), the interleaver of R messages will
receive sequences row wise (2, 3, 110, 142, 165, 5…174)
to complete a decoding iteration (refer to eq.9 and 10).

)(2log p 2/p

53S

The Check to Bit processing unit is composed of p
serial computation units which computes the partial sum
for each block row in a multiplexed fashion to produce the
R messages in block column fashion. The registers
ps1,ps2 and ps3 correspond to the partial sum for block
row 1,2 and 3 respectively.

Figure1. Block Diagram of the Decoder Architecture

I CBU Adders CBU Sub
tractors

BCU Adders BCU Sub
tractors

1 1-15 14-28 17-31 20-34

2 22-36 35-49 38-52 41-55

I=Iteration Number.
Table1. Occupation of Resources for a decoding iteration
in terms of clock cycles. (Shown for two iterations.)

I CBU Adders CBU Sub
tractors

BCU Adders

1 1-15 14-28 17-31

2 19-33 32-46 35-49

Table2. Occupation of Resources for a decoding iteration
in terms of clock cycles; with the equivalent
implementation of BCU where only required terms are
added to reduces idle cycles. This BCU has two adders,
three latches, two 2-input mux and one 3-input mux. The

3(=r) Long ‘D’
FIFO

R message

f

ps4
_

Q message

C

f/3

f/15
f/3

13(=c(r-1)+1) Long
Dual Pointer ‘B FIFO

L
U
T _

A2

A3

ps1

ps2

ps3

f

Q message

R message

A1
L
U
T

f/3

Q Init Interl
eaver
P by
P

CBU 1

CBU P

BCU 1

BCU P
SS

Interl
eaver
P by
P

Majority Function
Iteration CounterIteration Estimate

In

Out

V - 175

➡ ➡

explanation of the architecture is still based on Fig1 for
the simplicity.

Clock,I 13,1 15,1 22,1

1ps)1,(
1,

5

1

ks
k

k
Q)1,(

1,

5

1

ks
k

k
Q)1,(

1,

1

1

ks
k

k
Q

2ps)2,(
2,

4

1

ks
k

k
Q)2,(

2,

5

1

ks
k

k
Q

0

3ps)3,(
3,

3

1

ks
k

k
Q)2,(

2,

5

1

ks
k

k
Q

0

Table3. Snapshot of partial sum registers in p CBU s
operating in parallel to compute p R messages.

The CBU B FIFO corresponds to (13) stores the
intermediate computations. Its snapshot at 15th clock cycle

is ,1,1,1,5,2,5,3,5 ...,, BBBB .The registers A1, A2 and A3

(which correspond to (13)) latch the ps1, ps2 and ps3 in
14,15 and 16 clock cycles respectively and one of these
values (from 14- 28th clock cycle for 1st iteration) will be
selected sequentially as one of the inputs to the subtractor
and each subtraction operation during this period
produces R messages in block column fashion.

The Bit to Check processing unit is composed of p
serial computation units which compute the partial sum
ps4 for each block row in a sequential fashion to produce
the Q messages in block row fashion.

Clock,I 17,1 19,1 31,1

4ps 1

1

)1,(
1,

j

js
jR

3

1

)1,(
1,

j

js
jR

3

1

)5,(
5,

j

js
jR

Table4. Snapshot of partial sum registers in p BCU s
operating in parallel to compute p Q messages
 The BCU D FIFO corresponds to (14). Its snapshot at

19th clock cycle is 1,31,21,1 ,, RRR and at 31st clock cycle

is 5,35,25,1 ,, RRR .The register C (which correspond to

(14)) latch the ps4, every three clock cycles and is one of
the inputs to the subtractor and each subtraction operation
during this period produces Q messages in block row
fashion.

4. PERFOMANCE COMPARISON
The rough estimates for total gate count and clock

frequency are 2.4e5 and 150MHz respectively when 0.18
micron technology standard cell parameters are used. The
architecture is instantiated for one iteration and each
iteration takes 18 clock cycles.[Table 2]. The decoder for
the 1055 length code (2) can process 440 Mbps for
supporting maximum of 20 iterations. The throughput can
be improved by instantiating for multiple iterations.

Table5. shows the comparison with the related work.
The memory savings are 75% and savings in memory
accesses are 66% when compared to [3,4] . When

compared to [5,8] the memory accesses are 50% less
while the memory requirement is almost the same and this
results in better low power characteristic for the proposed
architecture. For example [8] reported that the NA-Mm
accounts for 50% of their decoder power.

Yeo

 [3]

Zhan
g[4]

Anand

[5]

Manso
ur [8]

Propose
d

Mm rcp ..4 rcp ..2 rcp .. rcp .. 0

Mc cp. cp. rp. cp. rcp ..

NA_M
m

rcp ..4 rcp ..4 rcp ..2 rcp ..2 0

NA_Mc rcp ..2 rcp ..2 rcp ..2 rcp ..2 rcp ..2

Table5. Memory requirement comparison
Mm: Memory for message storage Mc: Internal Memory
in Check to Bit Serial Computational Units NA_Mm: No.
of R/W accesses from Mm for a decoding iteration
NA_Mc: No. of R/W accesses from Mc for a decoding
iteration

5. CONCLUSION
 A new decoding schedule for LDPC is presented
based on a property of structured LDPC codes. A new
architecture based on this decoding schedule is described.
The design has reduced memory and correspondingly low
power requirements when compared to the existing work.
This proposed configuration can be thought of a parallel
architecture scaled down by a factor c x r and still having
the simple interconnection structure associated with a
serial architecture.

REFERENCES
[1] R. G. Gallager, Low-Density Parity-Check Codes, M.I.T Press, 1963.
Available at http://justice.mit.edu/people/gallager.html
[2] Blanksby, A.J.; Howland ,C.J, A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder, Solid-State Circuits, IEEE
Journal of, Vol.37, Iss.3, Mar 2002 Pages:404-412
[3] Yeo, E.; Pakzad, P.; Nikolic, B.; Anantharam, V., “High throughput
low-density parity-check decoder architectures” in proceedings of Global
Telecommunications Conference, 2001.Volume: 5, Page(s): 3019 –3024
[4] T. Zhang and K. K. Parhi, “Joint (3, k)-Regular LDPC Code and
Decoder/Encoder Design”, to appear in IEEE Transactions on Signal
Processing. Available at http://www.ecse.rpi.edu/homepages/tzhang/
[5] A. Selvarathinam, G.Choi, K. Narayanan, A.Prabhakar, E. Kim, “A
Massively Scalable Decoder Architecture for Low-Density Parity-Check
Codes”, in proceedings of ISCAS’2003, Bangkok, Thailand.
[6] A. Selvarathinam, G.Choi, K. Narayanan, A.Prabhakar, E. Kim, “A
Massively Scalable Decoder Architecture for Low-Density Parity-Check
Codes”. Journal version in submission.
[7] M. M. Mansour and N. R. Shanbhag, "Low Power VLSI Decoder
Architectures for LDPC codes,'' in proceedings of International
Symposium on Low Power Electronics and Design (ISLPED), Monterey,
CA, Aug. 2002, pp. 284-289.
[8] M. M. Mansour, M. M. Mansour, and N. R. Shanbhag, "A Novel
Design Methodology for High-Performance Programmable Decoder
Cores for AA-LDPC Codes,'' in proceedings of IEEE Workshop on
Signal Processing Systems (SiPS), Seoul, Korea, August 2003

V - 176

➡ ➠

