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ABSTRACT

Markov Random Field modeling is a powerful parallel pro-
cessing paradigm which can appropriately deal with the huge
amount of data in the domain of low-level image processing
problems. This paper describes a novel combined Simula-
tion and semiconductor-technology independent VLSI de-
sign environment for Markov Random Field based process-
ing models and systems. The concepts of this novel com-
bined Simulation- and VLSI Design-Environment are ex-
perimentally demonstrated and proved by simulation results
and detailed chip-layouts of a special Markov Random Field,
which simultaneously solves the image processing problem
of noise removing, intensity-level preserving and intensity
histogram based segmentation.

1. INTRODUCTION

With the influential paper of D. Geman and S. Geman from
1984 [2] with the title ”Stochastic relaxation, Gibbs dis-
tribution, and the Bayesian restoration of images” a prob-
abilistic approach to signal- and image-analysis has been
popularized. This approach adopts the Bayesian paradigm
and uses discrete Markov Random Fields (MRF) as a priori
models. Since this paper from 1984 numerous publications
have proven that the Bayesian approach to image-analysis
provides a very general and powerful framework encom-
passing various problems concerning image-processing -
especially in the domain of low-level image processing. But
up to now no industrial-relevant digital MRF hardware real-
izations and MRF hardware development approaches have
been reported. This holds true for MRF hardware realiza-
tions because of their oversimplified MRF-models respec-
tively algorithms for tractability, hardware architecture in-
flexibility, improper system scalability, analogue technolo-
gies and overall processing speed; regarding MRF hardware
development approaches - if so far addressed as a problem at
all - by now only few academic and industrial-intern studies
exist, typically exploring just one specific problem setting at

a time. Until now an overall concept and approach to tackle
the MRF development problem in general is still lacking.

2. MRF MODEL-CLASS

This approach formally adopts the Bayesian framework and
states the signal- and image-processing problems under con-
sideration with probabilities and Bayes law in the following
way:

P (x|y) =
P (y|x)P (x)

P (y)
(1)

The probability P (x|y) is called the a posteriori probabil-
ity, P (x) the a priori probability and P (y|x) the likelihood
probability. Where y denotes some observed data and x de-
notes one possible solution of the signal- or image-processing
problem. As we are dealing with an ill-posed problem class,
we need a regularization. In this Bayesian approach regu-
larization is realized by means of the a priori probability
and the likelihood probability in order to provide solutions
with a probability measure. So we are looking for an esti-
mated solution x with high probability; that is essentially to
maximize the a posteriori(MAP) probability:

arg max
x

P (x|y) = argmax
x

P (y|x)P (x) (2)

From above equations it becomes obvious that this approach
requires the modeling and representation of the probabili-
ties P (x) and P (y|x) in a mathematical exact, flexible and
tractable way as well as optimization algorithms to solve the
MAP (maximum a posteriori) formulation. With the help of
Markov Random Field theory, the properties of Gibbs distri-
butions and the so called Hammersley-Clifford Theorem [3,
which establishes the link between Markov Random Fields
and Gibbs distributions, we can model, represent and cal-
culate the two probabilities above mentioned by a sum of
local interactions of the Sites with each other. We are es-
pecially interested in low-level image processing problems
and therefore may restrict ourselves to focusing on site in-
teractions in neighborhoods up to the 5th order (Figure 1).
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Fig. 1. Markov Random Field on a regular lattice. MRF
neighborhood system of 1.-5. order (a-e).

The interested reader may consult the literature [7] for an in-
depth presentation, proofs and discussion of this topic. Thus
we may represent the a posteriori probability by an energy-
functional U(x, y), which is essentially just the summing of
local computations:

U(x, y) = U(y, x) + U(x) (3)

with

U(x) =
∑
C1

V1(C1) +
∑
C2

V2(C2) +
∑
C3

V3(C3) + (4)

∑
C4

V4(C4) +
∑
C5

V5(C5) + ... (5)

and
U(y, x) =

∑
s

F ((xs, ys)) (6)

Ci representing the cliques of the ith neighborhood system
(Figure 1) and Vi respectively F denoting any function. s is
a finite index set on the MRF-lattice.

The energy function U(x, y) is usually non-convex and
therefore we need relaxation methods to reach an optimum.
The first group comprises stochastic relaxation methods, which
are based on Simulated Annealing (SA) [4]. These meth-
ods converge asymptotically towards the global optimum
but have the drawback of exhaustive computation time. The
second group consists of mixed-mode (stochastic and deter-
ministic) methods, Graduated Non-Convexity, Mean Field
Annealing (MFA) [7], Modified Metropolis Dynamic (MMD)
and the last group contains deterministic methods for in-
stance Iterated Condition Modes (ICM) [1]. The methods
forming the last two groups require significantly less com-
putation time.

3. MARKOV RANDOM FIELD SIMULATION- AND
DESIGN-ENVIRONMENT

Each Markov Random Field can be divided in the follow-
ing four main architectural building blocks, which are es-
sential and generic for each Markov Random Field: (1)

Empty MRF-Cell with neighborhood connections. (2) MRF
Memory Hierarchy to distribute and collect the data in the
topology. (3) Energy Functional U(x, y). (4) Optimiza-
tion methods. All of the main architectural building blocks
of Markov Random Fields earlier mentioned are mirrored
in the Simulation-Environment as well as in the Design-
Environment. The four main architectural building blocks
may automatically be generated for simulation and VLSI
implementation purposes.

3.1. MRF Simulation System

During then conception of our Simulation-Environment we
had to keep several essential requirements in mind, so that
our Simulation-Environment is extendable with respect to
MRF-net-topologies, neighborhood-systems, Energy Func-
tions, optimization algorithms and multi-scale processing
approaches. The overall system also has to be flexible enough
to cover different abstraction-levels of modeling and sim-
ulation. The spectrum reaches from pure serial simulation
with float point arithmetic to pure massive parallel hardware-
relevant simulation with bit-length limited fixed-point arith-
metic. The Simulation-Environment (Figure 2) comprises
the following eight main building blocks: (1) Simulation
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Fig. 2. Structure and components of MRF Simulation-
Environment.

Kernel. (2) MRF Basics. Elementary infrastructure to sup-
port the Simulation of Markov Random Field based sys-
tems. (3) Net Structure. Building block to automatically
set-up/initialize and generate the Net-Structure within the
Simulation-Environment. (4) Memory Structure. Build-
ing block to automatically set-up/initialize and generate the
Memory-Structure within the Simulation-Environment. (5)
Energy Functional. Library of already modeled Markov
Random Fields and reusable parts of different energy func-
tionals. (6) Optimization Methods. Library of optimization
algorithms ranging from pure deterministic methods to pure
stochastic methods and methods in between. (7) API Sim-
ulation Analysis. Allows all kind of analysis: From visual-
ization, data collecting and transfer to other analysis tools.
(8) API Development Environment. Transfer of required
data to the Development-Environment.
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3.2. MRF VLSI Design-Environment

The design and VLSI-Implementation - as System-on-Chip
realization - of massive parallel Markov Random Field based
signal- and image-processing systems is a challenging, time
consuming, error prone and expensive task which until now
is not addressed by any approach of the academic and in-
dustrial community. In order to set up a MRF Design- Envi-
ronment we have developed our own high-level design tools
to support the critical parts of the design flow. Our tool-set
is smoothly integrated in standard industrial FPGA/ASIC
design flows by means of two interfaces: A specification
language front-end interface for Markov Random Field def-
inition and a HDL & Scripting back-end interface to stan-
dard 3rd party HDL-simulation, synthesis and place & route
tools. The generators for the main building blocks of each
Markov Random Field are the essential parts of our tool-set.
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Fig. 3. Structure and components of MRF Design-
Environment.

The Design-Environment (Figure 3 ) consists of the fol-
lowing six main building blocks: 1) API Design Environ-
ment. Specification language front-end to pass over the
specification of the Markov Random Field to the Design-
Environment. 2) Topology Structure Generator. Mapping of
specified MRF topology to an internal abstract graph repre-
sentation, which can be modified by structural reorganiza-
tion methods. The topology generator will support MRF
neighborhood system up to the 5th order (Figure 1). 3)
Memory Hierarchy Generator. Builds up an internal graph
representation, which can be modified by structural driven
methods 4) Energy Functional Generator. Gets the required
information from the AI and builds up an internal graph rep-
resentation of the energy functional. Structural and technol-
ogy driven reorganization methods generate the hardware
architecture. Currently a High-Level MatLab language de-
sign entry and 3rd party tool support is used. 5) Optimiza-
tion Methods Generator. What is described in the previous

item also applies to this generator. 6) HDL & Script Gen-
erator. The internal representations of the different building
blocks are processed and VHDL-Code and Scripts for 3rd
party tools are written out. For an detailed presentation of
the VLSI design environment please see [6]

(a) (b) (c)

(d) (e) (f)

Fig. 4. Images and Histograms. (a)-(c) Original image,
noisy image, restored image. (d)-(f) intensity histograms
of above images.

4. RESULTS

The novel combined Simulation and design environment for
massive parallel Markov Random Field VLSI architectures
was intensively and successfully tested over the previous
months. The following energy functional was used for the
experimental investigations and results presented in this pa-
per. For the simulations the Gibbs Sampler optimization
method [2] was used and for the VLSI architectures the de-
terministic optimization method ICM [1].

U(x, y) =
∑

s

∑
i=1,2,3,4

∑
<s,t>i

βi

(
1 − 2

1 + |xs−xt|
κ

)
︸ ︷︷ ︸

Intensity level preserving energy term

+ (7)

∑
i=1,2,3,4

∑
<s,t>i

V (ωs, ωt)

︸ ︷︷ ︸
segmentation energy term

+ (8)

1
2α2

∑
(xs − ys)2︸ ︷︷ ︸

white Gaussian noise energy term

(9)

where s denotes the finite index set of the MRF lattice, βi

are variables of the form 2n, the same holds for α and by
< s, t > the neighbors are denoted; in this example the
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direct four neighbors of the 1. order neighborhood system
(Figure 1). V (ωs, ωt) is equal to the parameter −� if ωs =
ωt and otherwise to +�. Large values of � will support the
generation of homogeneous regions.

(a) (b)

Fig. 5. (a) Image with added white Gaussian noise (Vari-
ance: 0.01, Mean:0.0). (b) Restored image

Thus we have a energy functional at hand, which si-
multaneously removes noise, preserves intensity levels and
segments the image. Figure 5a shows the input image for
the Markov Random Field with the before introduced en-
ergy functional. The image data was degraded with white
Gaussian noise. The MRF removes the noise and results in
Figure 5b, which is suitable for intensity histogram based
segmentation. In Figure 4 the original image, the noise de-
graded image and the restored image as well as their corre-
sponding histograms are illustrated. The result of the MRF

Fig. 6. Segmentation with 8 classes.

segmentation with 8 classes is shown in Figure 6. The result
of the segmentation begins to converge to the final result as
soon as the noise removing process has converged to its fi-
nal result. A prototypical implementation, the floorplan and
the place & route result of a Markov Random Field with
size 64x64 is illustrated in Figure 7.

(a) Floorplan of MRF (b) Place & Route of MRF

Fig. 7. Markov Random Field realization. Size 64x64 and
1. order neighborhood system. Semiconductor technology
FPGA Xilinx Spartan3.
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