<

A NOVEL HIGH PERFORMANCE DISTRIBUTED ARITHMETIC ADAPTIVE FILTER
IMPLEMENTATION ON AN FPGA

Daniel J. Allred, Heejong Yoo, Venkatesh Krishnan, Walter Huang, and David V. Anderson

Center for Signal and Image Processing,
Georgia Institute of Technology, Atlanta, GA 30332 USA

ABSTRACT

In this paper, an FIR adaptive filter implementation using a
multiplier-free architecture is presented. The implementation is
based on distributed arithmetic (DA) which substitutes multiply-
and-accumulate operations with a series of look-up-table (LUT)
accesses. This can be achieved at the cost of a moderate increase
in memory usage. The proposed design performs an LMS-type
adaptation on a sample-by-sample basis. This is accomplished by
an innovative LUT update using a matched auxiliary LUT. The
system is implemented on an FPGA that enables rapid prototyping
of digital circuits. Implementation results are provided to demon-
strate that a high-speed, low logic complexity LMS adaptive filter
can be realized employing the proposed architecture.

1. INTRODUCTION

Today’s consumer electronics such as PDAs, cellular phones and
other multi-media and wireless devices often require digital signal
processing (DSP) algorithms for several crucial operations. Due to
a growing demand for such complex DSP applications, high per-
formance, low-cost system-on-a-chip implementations of DSP al-
gorithms are receiving increased attention among researchers and
design engineers.

Linear filtering is one of the fundamental operations that is
typically performed in any DSP system. A discrete-time linear
finite impulse response (FIR) filter generates the output y[n] as a
sum of delayed and scaled input samples z[n] via the equation

y[n] = Z_ wrz[n — k. (1)

A typical digital implementation will require K multiply-and-
accumulate (MAC) operations, which are expensive to compute
in hardware due to logic complexity, area usage, and throughput.
Alternatively, the MAC operations may be replaced by a series
of look-up-table (LUT) accesses and summations. Such an im-
plementation of the filter, known as distributed arithmetic (DA),
achieves higher throughput and lower logic complexity at the cost
of increased memory usage. Recent advances in memory design
technology have resulted in shrinking memory sizes, making this
tradeoff an attractive option. A good tutorial review of DA linear
filters is given in [1].

Many DSP applications require linear filters that can adapt to
changes in the input signals. The implementation of an adaptive
filter [2] based on the DA concept poses several challenges. Since
the DA filtering operation is based on an LUT, changes to the filter
can require extensive changes to the LUT. This can be impracti-
cal for large LUT sizes. Several past attempts have been made to

0-7803-8484-9/04/$20.00 ©2004 IEEE

V- 16l

implement adaptive filters using DA [3] [4], but the approxima-
tions made to standard adaptation algorithms may be unsuitable
for practical applications.

In this paper, we develop and present an implementation of a
discrete-time linear FIR adaptive filter based on the well-known
LMS algorithm using the DA concept. A novel approach for up-
dating the LUT tables of the DA filter is presented. The details of
the proposed design and a description of the constituent modules
of the DA-based LMS adaptive filter is provided in Sec. 3. The
implementation results and a brief discussion of design trade-offs
are presented in Sec. 4.

2. BACKGROUND CONCEPTS

In this section, brief descriptions of DA digital filters and adaptive
filtering algorithms suitable for digital hardware implementations
are presented.

2.1. Distributed Arithmetic

DA was first introduced by Croisier et al. [5] and further developed
by Peled and Lui [6]. DA provides a multiplier-less implemen-
tation of FIR filters through a bit-serial computation utilizing all
possible combination sums of the filter coefficeints. It is assumed
that the inputs to the filter are represented as B bit 2’s complement
binary numbers with only the sign bit to the left of the radix point.
Then

B-1
zln — k] = —bro + Z b2 2)
=1
and Eq. (1) can be rewritten as
K-1 B—1pK—1
yln] = — {Z ’wlcbk0:| +y [Z wkbkl} 27t @3
k=0 =1 L k=0

It is noted that the terms in the square brackets may take only one
of 2% possible values; these values, which are all the possible
combination sums of the filter coefficents, are stored in an LUT,
denoted as the DA filtering LUT (DA-F-LUT). The filtering oper-
ation may then be implemented, according to Eq. 3, by B look-up,
shift, and accumulate operations.

The block diagram of a typical DA implementation of a four
tap (K = 4) filter is shown in Fig. 1. The bank of shift registers in
Fig. 1 stores four consecutive input samples. The concatenation of
the rightmost bits of the shift registers becomes the address of the
LUT. The shift registers are shifted right at every clock cycle. The
corresponding LUT entries are also shifted and accumulated B
consecutive times where B is the precision of the input data. The

ICASSP 2004

input signal

e
e,

>
=

data

w0
wl

wo+wl Sign control

w2
lHHHHI

WwO+w2
wl+w2
wO+wl+w2
w3
wo+w3
wl+w3
WwO+wl+w3
w2+w3
WO+w2+w3
wl+w2+w3
(WO+Ww14+w2+w3

yn]

M~ mmmmmoccccooe

mem—ocococormrmmmoccoe
~omomomomomomomof
2

mmocor~r~rocormcermrmco

2xB DALUT

Fig. 1. Block diagram of a four tap (K = 4) DA FIR filter. Each coeffi-
cient has B bits of precision (ex. B=16).

DA filter can complete the filtering operation in B clock cycles
regardless of the size of the filter, K. Thus, a high throughput
rate can be obtained using the DA implementation, especially if
K> B.

It must be noted that as the filter size K increases, the mem-
ory requirements grow exponentially as 2% This problem may be
alleviated by breaking up the filter into smaller base DA filtering
units that require tractable memory sizes and then summing up the
outputs of these units. If the K tap filter is divided into m units of
k tap base units (K = m X k), then the total memory requirement
would be m x 2% memory words. The total number of clock cycles
required for this implementation will be B + [log2(m)]; the ad-
ditional second term is the number of clock cycles required to im-
plement an adder tree to calculate the sums of the units. Thus the
decrease in throughput of this implementation is marginal. For in-
stance, if K = 128, then instead of 2'2® in a full LUT implementa-
tion, we can choose k = 4 and m = 32 which would only require
512 memory words. The number of clock cycles required for this
implementation would be 21 clock cycles as compared with the
full LUT implementation that would require 16 clock cycles.

2.2. LMS Adaptive Filters

An adaptive filter changes its weights wy with time to match a
desired performance objective. Typically, the performance of the
adaptive filter is quantified in terms of the mean square value of the
error between its output y[n] and a desired signal d[n]. The least
mean-square (LMS) adaptation algorithm updates the weights to
minimize the mean-square error (MSE) of the output. The weight
adaptation in an LMS adaptive filter is given by

wi[n + 1] = wg[n] + pen|z[n — k], 4)

where e[n| = d[n] — y[n].

Several approximations of the LMS algorithms are often used
for hardware implementations. The sign error LMS (SE-LMS)
approximates the error as e[n] = sgn(d[n] — y[n]) and the sign
data LMS (SD-LMS) replaces the term z:[n — k] by sgn(z[n—k]).
In this paper, an LMS-type algorithm is implemented where the
term pe[n] is quantized to a power of 2. Implementation results
demonstrate that this quantized error LMS (QE-LMS) outperforms
the SE-LMS and is comparable to the LMS algorithm in terms of
the convergence speed.

3. DA ADAPTIVE FILTER

The LMS adaptation algorithm requires the filter weights w[n] to
be updated according to Eq. (4) every sample that is filtered. After

calculating the updated weights, the entries of the LUT, which are
all possible combination sums of the weights, are recalculated and
updated. Doing this on a sample-by-sample basis is computation-
ally expensive and time consuming, causing significant reduction
in the filter throughput. For example, a brute-force update of the
DA-F-LUT could take approximately 1000 clock cycles for a 128
tap FIR filter.

In this paper, a novel adaptation scheme for updating the DA-
F-LUT is presented that requires fewer clock cycles than the brute-
force LUT recalculation. The overall system level diagram of the
proposed implementation is shown in Fig. 2. The DA auxiliary
table contains a separate LUT, denoted as the DA auxiliary LUT
(DA-A-LUT), which contains all possible combination sums of
the K most recent input samples. The table size and structure
of the DA-A-LUT are identical to that of the DA-F-LUT. It is this
analogous structure that allows the adaptation scheme described
below to work efficiently.

din]
—
x[n] yin]
—> DA Filter —
16 16
addr Module

filtering_done

w_in

lwr_en DA_F_LUT w_out
4
sample_clk system_clk a

8

addr DA Auxiliary DA Filter
0 Table Module Update
Controller

sample_table_out

18
16 DA_A_LUT sample_update_done
sample_clk system_clk

Fig. 2. Proposed DA Adaptive Filter System.

Module

system_clk

3.1. DA Adaptation Scheme

The brute-force method to update the DA-F-LUT would be to up-
date each new filter weight according to the LMS algorithm de-
scribed in Section 2, recalculate all possible combination sums of
the new weights, and then store the sums in the DA-F-LUT. In-
stead of updating the weights individually and then using the new
weights to regenerate the DA-F-LUT, the proposed method applies
the LMS algorithm directly to the contents of the DA-F-LUT. For
example, to update the (2° — 1)-th element of the DA-F-LUT,
which contains the sum of all k filter weights, the following for-
mula can be used:

iwl[n—&—l] :iwl[n]—&—ue[n}ix[n—l]. ®)

The DA-F-LUT update then consists of reading the same
memory location in both the DA-F-LUT and DA-A-LUT, multi-
plying the output of the DA-A-LUT by pe[n], adding this quantity
to the output of the DA-F-LUT, and finally storing the result back
in the same memory location of the DA-F-LUT. This process is re-
peated for addresses 1 to 2¥ — 1 (we can ignore memory location
0 as it will always have a zero value).

V-162

Since it is area inefficient to implement pe[n]z[n — k| using
a hardware multiplier, the following two schemes are considered.
The first scheme is the SE-LMS with p set as a power of two. The
multiplication is replaced by a right shift and the result is added or
subtracted to the DA-F-LUT output depending on the sign of the
error. The second scheme is the QE-LMS, which was mentioned
in Sec. 2.2. In this case mu is fixed to some power of two and
the error value is quantized to the closest power of two, essentially
quantizing the product pe[n] to a power of two. Now the magni-
tude of the error, and not just the sign, plays a role in the rate of
adaptation. When the error is large, a large update is applied to
the filter weights and faster convergence occurs. When the error
is small, a small update is applied thus minimizing the jitter of the
weights as they near the optimum values.

3.2. DA Auxiliary Table Module

In this section, the update process of the DA-A-LUT is described.
The brute-force method would be to recalculate all possible com-
bination sums of the £ most recent samples (after each new sample
arrives) and then store the results in the DA-A-LUT. A more effi-
cient update method can be devised by considering how the DA-
A-LUT changes as a new sample arrives and the oldest sample is
discarded.

Fig. 3 shows the change in the DA-A-LUT from time n to time
n+1 for k = 4. The high address locations in the table (addressed
by 1000 to 1111) contains sums involving the oldest sample x[n —
3], which is the sample being discarded at time n + 1. The sums
in the low address locations of the DA-A-LUT (addressed by 0000
to 0111 at time n) can be reused by mapping these values to the
even address locations of the table at time n + 1, as shown by the
arrows in Fig. 3.

External DA Auxillary Table External
Address; LUT Value LUT Value o™
0000 0 > 0 0000
0001 Xn] Xn+] oot

0010 1] —

0011 X[n-1]+x[n]

Xr] 0010
\ XAlqne] o011

0100 x[n-2] \ X[n-1] 0100
X[n-1]+x[n+1] 0101

X{n-2}+x[n]
0110 X[n-2]+x[n-1] X[N-1]+x[n] 0110
0111 X[n-2]+x[n-1]+x[n X[n-1]+x[n]+x[n+1 0111
1000 x[n-3] x[n-2] 1000

1001 X[n-3]+x[n] X[n-2]+x[n+1 1001
1010 X[n-3]+x[n-1 X[n-2]+x[n 1010
1011 X[n-3]+x[n-1]+x[n X[n-2]+x[n}+x[n+1 1
1100 X[n-3]+X[n-2 X[n-2]+x[n-1 1
1101 X[n-3]+x[n-2]+X[n v . A X[n-2]+x[n-1]+x[n+1 1
1110 [x[n-3[x{n-2L+x{n-1 attime ‘n+1 x[n-2Lex[n-1]+x{n] 1
111 1] x[n-3+x[n-2]+x[n-1]+x[n x[n-2]+x[n-1]+x[n]+x[n+1] |1

Attime n At time n+1

Fig. 3. Change in the content of the DA-A-LUT from time n to time n+1.

The values in the odd address locations can then be formed by
simply reading the value in the preceding even address location,
adding the newest sample x[n + 1] and then storing the result at
the odd address. This can be represented by

DA-A-LUT(2l +1) = DA-A-LUT(2l) + z[n + 1],
1=0,...,2F"—1. (6)

The low address locations of the DA-A-LUT at time n can be
mapped to even address locations at time n-+1 by a simple rotation
of the k£ address lines. This allows the physical contents of the LUT
to remain the same, even as external logic sees the table as shifted.
The address rotation from time n to n + 1 is shown in Table 1.
The address line rotation is accomplished via k, k-to-1 multiplex-
ers, whose outputs connect to the DA-A-LUT’s internal address

Time n Timen + 1
Internal Address | External Address | External Address
0000 0000 0000
0001 0001 0010
0010 0010 0100
1101 1101 1011
1110 1110 1101
1111 1111 1111

Table 1. Rotation of address lines from time n to time n + 1.

and whose select lines are the bits of a counter. This counter is in-
cremented when a new sample arrives, instantaneously remapping
the table. The DA auxiliary table module then begins the update
of the DA-A-LUT, as described above. When the update is done
the sample_update_done signal (see Fig. 2) goes high, indicating
to the DA filter update controller that the DA-A-LUT is ready to
be used in updating the DA-F-LUT.

3.3. DA Filter Module

The DA FIR filter module performs the filtering operation on the
incoming data samples with the current values of the weights. The
DA filtering operation has been explained in detail in Sec. 2.1.
When filtering is complete, the filtering done signal (see Fig. 2)
goes high.

3.4. DA Filter Update Controller Module

The DA filter update controller provides the control logic for the
system after the DA-A-LUT is updated and filtering is complete.
Once the filtering is done, the error, e[n] = d[n] — y[n], is calcu-
lated. The term pe[n)] is then quantized to the appropriate power of
two (see Sec. 3.1). Upon completion of the DA-A-LUT update as
described in Sec. 3.2, the update controller accesses the memory
locations of the two LUTs and stores the new weight combination
sums in the DA-F-LUT.

3.5. Timing Analysis

For a K tap FIR adaptive filter implemented using m base DA
filtering units, each of size k, the update of the DA-A-LUT can be
done in 27! clock cycles as described in Section 3.2. This may
be done at the same time (in parallel) as the filtering and adder tree
operation, which take a total of B+ [log2(m)] clock cycles. Thus
the total number of clock cycles for filtering and updating the DA-
A-LUT is maxz (B + [log2(m)],2""). The updated DA-A-LUT
is then used to update the DA-F-LUT; this operation requires 2*
clock cycles. Thus the overall K tap adaptive filter requires 2% +
maz (B + [log2(m)],2" ") clock cycles. The number of clock
cycles required for a 128 tap adaptive filter as a function of the size
of the base unit & is shown in Fig. 4. It can be observed that the
proposed implementation can achieve a much higher throughput
than a brute-force implementation if k£ and m are appropriately
chosen.

V-163

Clock cyles

5 6 7
Number of taps in base DA filter unit

Fig. 4. Number of clock cycles required to filter one time sample as a
function of the base DA filter unit size. (K = 128)

4. IMPLEMENTATION RESULTS

A DA-based QE-LMS adaptive FIR filter was implemented using
using an Altera Stratix FPGA. For illustration purposes, we present
the implementation results of a size 32 tap adaptive filter with & =
4 and m = 8 (to maintain simplicity in the adder tree design, only
filters with m as a power of two were considered). White Gaussian
noise with zero mean and unit variance was used as the input. The
desired signal was generated by filtering the input with an FIR
filter whose coefficients are chosen randomly. The number format
for the input, desired, and output signal is 2’s complement 16 bit
Q15. In this implementation pe[n] is quantized to four levels.

To contrast the QE-LMS implementation, an SE-LMS FIR fil-
ter was designed. Other than the fixed p for the SE-LMS, the
implementation of the two designs are identical. Using the same
input and desired signal, the MSE’s of each implementation are
shown in Fig. 5(a). As illustrated, the QE-LMS filter converges
faster than the SE-LMS. These results are also verified by the
MATLAB simulation results shown in Fig. 5(b).

For the proposed 32 tap FIR adaptive filter, the entire adapta-
tion may be done in about 37 clock cycles. This is accomplished
by employing the DA-A-LUT to avoid the recalculation of all the
possible combination sums of the input samples that are required
for the weight updates. Thus, compared to the brute-force method
of adapting the DA-F-LUT, the proposed method provides signifi-
cant gains in terms of timing requirements.

5. CONCLUSIONS

A novel multiplier-less implementation of an LMS-type adaptive
filter based on distributed arithmetic (DA) has been presented in
this paper. The DA concept involves the implementation of a
multiply-and-accumulate operation using look-up-tables (LUT).
The proposed adaptive filter updates the LUT of all possible com-
bination sums of weights on a sample-by-sample basis using an
auxiliary LUT. Such an implementation significantly reduces the
number of clock cycles and logic complexity required for the up-
date of the LUT. For the purpose of illustration, a 32 tap DA-based
adaptive LMS filter was successfully implemented on an FPGA.
It is demonstrated that the system described in this paper may be
used for a high-throughput, area efficient implementation of adap-

N — QE-LMS
KN - - SE-LMS
.

MSE(dB)
) |

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

(a)
:
s N - - SE-LMS

MSE(dB)

[O - N
AY N RS,

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

(®)

Fig. 5. (a) MSE of 32 tap QE-LMS and SE-LMS filters implemented with
Altera’s Stratix FPGA chip for m = 8 and k = 4. (b) MSE of 32 tap
QE-LMS and SE-LMS filters simulated in MATLAB.

tive filters at the cost of a marginal increase in the memory require-
ments.

6. ACKNOWLEDGEMENT

The authors would like to thank Tyson Hall for his valuable dis-
cussions and helpful comments.

7. REFERENCES

[1] Stanley A. White, “Applications of distributed arithmetic to
digital signal processing: A tutorial review,” I[EEE ASSP Mag-
azine, vol. 6, pp. 4-19, July 1989.

[2] S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Sad-
dle River, NJ, 1996.

[3] C. H. Wei and J. J. Lou, “Multimemory block structure for
implementing a digital adaptive filter using distributed arith-
metic,” IEE Proceedings, vol. 133, Pt. G, no. 1, pp. 19-26,
February 1986.

[4] C. E. N. Cowan and J. Mavor, “New digital-adaptive filter
implementation using distributed-arithmetic techniques,” IEE
Proceedings, vol. 128, Pt. F, no. 4, pp. 225-230, August 1981.

[5] A. Croisier, D. J. Esteban, M. E. Levilion, and V. Rizo, “Digi-
tal filter for PCM encoded signals,” U.S. Patent No. 3,777,130,
issued April, 1973.

[6] A. Peled and B. Lie, “A new hardware realization of digital
filters,” IEEE Transactions on A.S.S.P,, vol. 22, pp. 456-462,
December 1974.

V-164

I 2

