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ABSTRACT

The residue number system (RNS) has been applied to 
digital signal processing (DSP) applications that are 
characterized by demanding speed, power, and precision 
requirements. An element in a mixed-signal RNS-enabled
solution is a residue to analog converter (RAC), a device 
that maps an RNS number into an equivalent real
number. In this paper, an efficient RAC implement is 
presented that can be realized using existing technology.

1. INTRODUCTION

The residue number system, or RNS, is an unweighted 
numbering system that supports high-speed arithmetic 
within concurrent, non-communicating, small wordlength
channels [1]. Because of this feature, computer
arithmeticians have historically promoted the RNS for
high-speed arithmetic-intensive applications. Engineers
developing RNS-based solutions have also discovered 
that the RNS can also enable designs of reduce complexity, 
power consumption, and costs. A number of FPGA -based
studies have demonstrated RNS design principles and 
speed/complexity advantages. Application domains
include FIRs [2], discrete wavelet transform (DWT) filter 
banks [3], communications channelizers (digital down
converter) [4], and wavelet-based image compressors [5]. 
RNS advantages have also been reported when the
technology is reduced to ASIC implementation, including 
FFTs [6]. As RNS systems become more plentiful, it is 
natural to expect to see their use extend into many new 
applications. This may will require the fusion of RNS
processing agents with an analog to RNS converter (ARC) 
and RNS to analog converter (RAC). Existing ARC
designs are based on the use of conventional analog to
digital converters (ADC) and a layer of logic that converts 
a digitized integer value of an analog sample, into a set of 
residue digits [1]. RAC design strategies have been less 
studied. They are historically based on the direct use of 
Chinese Remainder Theorem (CRT), or mixed radix
conversion (MRC) algorithm-based residue to integer
converters. These designs have proven to be complex, 
requiring a considerable investment in dedicated logic, 
resulting in speed, power and cost penalties. In this paper, 

an efficient RAC architecture is presented that is capable 
of running at high real-time speeds within a low-complexity
low-power architecture.

2. RESIDUE NUMBER SYSTEM

Numbers in the RNS are represented in terms of a bases set 
P={p1., …, pi, ..., pL} of relatively prime integers pi. The ith

moduli, denoted pi, is assumed to be bounded by pi ≤ 2b.
The dynamic range of the RNS system is given by M = Π
pi, i = 1, 2,…, L. Any integer number X∈[0,..., M-1] ≡ ZM,
has a unique RNS representation given by X ↔ { X1,..., XL}
where Xi = X mod( pi). Here Xi  is called the ith residue of X
modulo pi. Signed integers can also be represented,
reserving the range [0, ... , M/2-1] for positive numbers and 
[M/2, ... , M-1] for negative numbers. For purposes of 
illustration and discussion, it will be assumed that all 
numbers are positive.

Arithmetic in the RNS is performed as a set of
concurrent pairwise operations. If • denotes modular
addition, subtraction, or multiplication, then for X and Y ∈
ZM, and Z=(X•Y)∈ ZM, it follows that:

Z=(X•Y) ≡ { (X1•Y1)mod(p1), … , (XL•YL)mod(pL) }  1.

which can be implemented with a set of small wordlength 
concurrent (non-communicating) operations. It is this
property that attracted computer arithmeticians with the 
promise of high-speed low-complexity data processing. 
Regardless of the details, it is now reasonably well known 
how to reduce the RNS to practice in silicon. 

An ARC is used to map an analog sample x into an 
RNS L-tuple. A conventional ADC device first converts x
into a quantized number X which is then translated to RNS 
using combinational logic lookup tables. A RAC uses the 
reverse multi-step process to synthesize a facsimile of x.
The Chinese Remainder Theorem (CRT) or mixed radix 
conversion algorithm (MRC) can be used to map an RNS
L-tuple { X1,..., XL} to an integer X which is converted to an 
analog data sample using a conventional DAC device. At 
present this operation carries a rather high complexity 
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overhead due to intrinsic CRT inefficiencies. Specifically, 
the conventional CRT formula is given by:
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The historical problem with implementing the CRT
algorithm, shown in Equation 2, has been its dependence 
on a large wordlength modulo(M) adder. The ε-CRT
provides a path around this problem [7]. The ε-CRT is 
actually a scaled CRT where the scale factor is chosen to 
convert the mod(M) dependence into a far simpler mod(2n)
mapping where M>2n. Such a converter can be
implemented using a conventional n-bit adder. This is a 
logical approach to the RAC problem since signals leaving 
the system are normally quantized to 4-16 bits of precision. 
Specifically, for a given M, one chooses a scale factor k
such that k=M/2n (2n=M/k). The ε-CRT algorithm converts 
an RNS L-tuple { X1,..., XL} into a scaled number X’ where:
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where “round” denotes rounding. Whereas the dynamic 
range of X was originally bounded by M, X’ is bounded by 
2n in the scaled system. The precis ion of the reconstructed 
number X’ is determined by the number of fractional bits 
“f” retained in the rounding operation (f ≤ b). An obvious 
choice is to have no fractional precision assigned to mi’
(f=0), causing mi’ to take the nearest integer value. These
concepts are illustrated in the following example.

3. EXAMPLE CRT AND ε-CRT
Suppose P={3, 4, 5}, resulting in M=60>25. The integer 
X=31 has the RNS representation 31 ←RNS→{1, 3, 1}. For 
the traditional CRT inversions:

m1=20; m1
-1=2; m2=15; m2

-1=3; m3=12; m3
-1=3

Inverting, one obtains:

X=〈(20〈1*2〉mod(3)+15〈3*3〉mod(4)+12〈1*3〉mod(5))〉
mod(60) = 〈40+15+36〉 mod(60) =31

An ε-CRT, for k=M/25=60/32=15/8, and no fractional bits of 
precision are retained by each mi’ (f=0), produces:

m1=20; m1
’=round(20/(15/8)=round(10.66) → 11

m1=15; m2
’=round(15/(15/8)=round(8) → 8

m1=12; m3
’=round(12/(15/8)=round(6.4) → 6

Inverting, one obtains:

X=〈(11〈1*2〉mod(3)+8〈3*3〉mod(4)+6〈1*3〉mod(5))〉
mod(32) = 〈22+8+18〉 mod(32) = 16

The scaled system interprets X=31 as Xs=31/k=16.533,
which the ε-CRT interprets to be X’=16. If full fractional 
precision of each of the mi’s had been retained {i.e., mi

=(10.66, 8, 6.4)}, then Xs= X’=16.533 which is error-free after 
rescaling by k=15/8.

4. RESIDUE TO ANALOG CONVERSION

The CRT and MRC algorithms have been historically been 
the enablers of RACs. Their primary limitation has been 
complexity. The complexity of a RAC can be significantly 
reduced with the use of an ε-CRT to replace a standard 
CRT or MRC. The RAC, shown in Figure 1 represents a 
design that directly employs an ε-CRT and is based on the 
use of small wordlength lookup tables (LUT), typically 
having a 6-bit or less address space. The LUTs are used to 
replace the computation of φi(Xi) = (mi‘<mi

-1Xi>
mod(pi))mod(2n). The n’-bit (n’=n+f) wide lookup outcome 
is addressed by the b-bit word Xi. The precision of an ε-
CRT converter is controlled by the number of fractional 
bits of precision retained in each mi’ which also control the 
size of the LUTs. 

The bxn’-bit LUT responses are combined with an n’-
bit digital adder as shown in Figure 1. The n’-bit outcome 
is then converted into an analog level with an n’-bit, or 
less, DAC. Nothing in the processes is technologically
unusual. The DAC speed and resolution requirements are 
assumed to be application dependent. Suppose that a
system’s real-time data rate requirements can be met by 16-
to 14-bit DAC. The error variance introduced by an L-
moduli ε-CRT is on the order of σ2=LQ2/12, where Q=2-f for 
f denoting the fractional bit resolution. For the L=3-moduli
demonstration system, with f=0, the statistical loss of
precision resolution is far less than 1 LSB. As a result, the
precision of a system imp lemented with a 16- to 14-bit DAC 
would have essentially that of the DAC itself. The
significance of this is found in design choices allowed by 
setting 2n=M/k .

5. THREE MODULI EXAMPLE

The behavior of the system described in Figure 1, for P={3,
4, 5}, can be studied using simulation. The input is 
assumed to be an integer-valued ramp spanning the range 
[0, 60), the scale factor k is again chosen to be k=M/25=
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60/32=15/8, and the values of mi’ and mi
-1 are computed as 

before. For the case where no fractional precision is 
retained (i.e., f=0 or n’=5), the computed error variance 
measured at points σi

2 of Figure 1, due to the ε-CRT
scaling, are found to be:

σ1
2 = 0.0740741; σ2

2 = 0; σ3
2 = 0.32

The output error, measured at point σs
2 of Figure 1 is also 

found to be the sum of the individual errors, or σs
2 = 

0.394074 (~ -0.7 bits), suggesting that the individual
channel errors can be considered to be statistically
independent. The system’s simulated input-output
behavior is graphically interpreted in Figure 2, which 
compares a ramp input to an ε-CRT’s output with full 
fractional precision (f=5), and zero fractional bit precision 
(f=0). The full fractional precision (f=5) ε-CRT conversion is 
seen to be zero-free. Errors are present in the zero
fractional bit precision (f=0) cases, but it is well within the 
predicted statistical error bound. 

These factors suggest that the ε-CRT enabled RAC can 
be made a practical reality, as the next example illustrates. 
Suppose that a RAC is required that produces an analog 
output with 12-bit precision from a 24-bit RNS system 
defined by the moduli set P={253,255,256}. Choosing k  = 
M/212 ~ 4032 will require three lookup tables configured as 
28x12, along with a 12-bit binary adder and 12-bit DAC.
Such a system can be easily configured using standard 
commercial off-the-shelf parts or embedded directly into 
that RAC design.

6. SYSTEM DESIGN ISSUES

In the study of the three-moduli system, defined be 
P={3, 4, 5}, it was observed that the third channel (i.e., 
mod(5) channel) had the highest error variance (i.e., σ1

2 = 
0.0740741, σ2

2 = 0, σ3
2 = 0.32). It can be argued that this is 

due to that path having the highest error power gain. 
Interpreting this observation in the context of the standard 
uniform random error model to represent a quantization 
process [8], the error variance is modeled to be σ2=Q2/12,
where Q is called the quantization step-size. The
quantization error variance for the mod(3) path is then 
predicted to be σ3Q

2=Q2/12=32/12, for the mod(4) channel, 
σ4Q

2=Q2/12=42/12, and for the mod(5) channel, σ5Q
2 = Q2/12

= 52/12. From the ε-CRT parameters, note that:

m1=20; m1
’=round(20/(15/8)=round(10.66) → 11

m1=15; m2
’=round(15/(15/8)=round(8) → 8

m1=12; m3
’=round(12/(15/8)=round(6.4) → 6

Therefore, the roundoff error in the mod(3) channel is 0.33, 
zero for the mod(4) path, and 0.4 for the mod(5) path. The 

error power gain for the mod(3) channel is given by 
G3=0.332, G4=0.02for the mod(4) path, and G5=0.42 for the 
mod(5) path. The error variance, defined at points σi

2, in 
Figure 1, can therefore be modeled as σi

2= Gi * σιQ
2 which 

translates to predicted values of σ1
2=0.333, σ2

2=0.0, and 
 σ3

2= 0.8. It can be noted that the predicted values are in 
good agreement with the measured values of 0.32, 0.0, and 
0.74. Based on this mathematical model, one can pose the 
question, what change in architecture shown in Figure 1, 
would produce the most dramatic improvement RAC
statistical performance? The answer is motivated by the 
observation that the second channel has an error power 
gain of zero and third channel has a computed error power 
gain four times larger that of first channel. This suggests 
that the largest improvement should come from improving 
the statistical performance of Channel 3. Once the moduli 
are chosen (fixing the values of σιQ

2), the only Channel 3 
parameter that is under user control is the power gain G5.
Adding just 1-bit of additional fractional precision to this 
channel would change the rounded value of m3’ from 6 to 
6.5. This, in turn, reduces G5 from 0.42 to 0.12, for a 16-fold
error power gain reduction. That is, the predicted value of 
σ3

2= G3 * σ5Q
2 is reduced from 0.8 to 0.02. This conjecture 

can be tested using simulation. The computed error
variance, for Channel 3 (only) having 1 additional bit of 
fractional precis ion, was (see Figure 1):

σ1
2 = 0.0740741; σ2

2 = 0; σ3
2 = 0.02

The output error measured at point σs
2 of Figure 1 is the 

sum of the individual errors or σs
2 = 0.0940741 (~ -1.7 bits) 

which is in good agreement with the predicted outcome. 

7. CONCLUSIONS

A practical residue number system to analog converter 
(RAC) architecture is presented. Its intended use is to 
connect systems having a high RNS content to the analog 
signal domain. The presented architecture is based on the 
use of the ε-CRT algorithm to convert RNS number to 
integers using only a few LUT cells and a mod(2n) adder. 
Using existing technology, a RAC can be designed having 
essentially the speed and precision of a modern DAC with 
only a modest increase in complexity. Statistical error
prediction formulas were presented and validated using 
computer simulation. A technique was also presented that 
allows for targeted precision improvement that requires 
only a modest investment of digital hardware. 
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Figure 1: RAC architecture (shown for 3-moduli case)

Figure 2: Performance of an ε-CRT enabled RAC. (top) 
input, (middle) ε-CRT with f=5, (bottom) ε-CRT with f=0.
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