
ABSTRACT

A hands free telephone application has been implemented on a
low-cost, custom-configured, block-floating-point digital signal
processor (DSP). The application consists of an acoustic echo
canceller and a spectral subtraction (SS) based noise suppressor.
The objective of pursuing a custom configuration was the
minimization of hardware cost for the given application. For this
objective, implementation has been carried out though a software
/ hardware codesign design flow on a resizable DSP platform.
The intention of exploiting block-floating-point as arithmetic was
to remove the burden of time-consuming fixed-point model
development, while employing an inexpensive fixed-point DSP.
This paper describes an implementation of the application. Signal
processing quality evaluation results are also presented for some
critical computation modules in the application.

1. INTRODUCTION

A configurable block-floating-point DSP platform has been
applied to several embedded audio applications, having shown its
potential of achieving high signal processing quality with low-
complexity hardware and of completing application program
developments without fixed-point models. Towards the first
commercial utilization of the platform, a demanding hands free
telephone application [1] has been chosen, and has been
successfully implemented.The algorithm of the hands free
telephone application has been originally developed as a
middleware product in the Voice Interface Project at Asahi Kasei
Corporation. Information about the middleware product as well
as the algorithm itself is available at [4].

2. DSP PLATFORM

The employed DSP platform to implement the hands free
telephone application is named as flexibly in-situ tailored DSP
(FitDSP), implying that a final DSP can be configured on site
during implementation of a given application to meet specific
needs of the application. Another important feature of the FitDSP
platform can be seen in its arithmetic. These two key features are
explained in the following.

2.1. Hierarchical Block-Floating-Point
FitDSP exploits a new variation of block-floating-point (BFP),
called hierarchical block-floating-point (H-BFP), as its native

arithmetic. BFP is an arithmetic that combines the advantages of
floating-point (FP) and fixed-point (FXP). With the concept of
BFP, a set of plural data elements is treated as a data block. An
exponent to reflect the maximal data value in a data block is
referred to as block exponent.

In theory, through block exponent, BFP can perform signal
processing tasks with the same manner as FP does. This situation
leads to high accuracy and large dynamic range. More
importantly, the time-consuming task of a fixed-point model
development can be removed from the development flow of an
application program. On the other hand, necessary hardware
complexity for the realization of BFP stays comparable with that
for FXP.

A problem with BFP appears during its implementation. Due
to a trade-off between the required number of memory access and
achievable signal processing quality, actual implementations are
in reality either very costly or with low signal processing quality.
Hence, H-BFP has been proposed after challenging this problem
[2][3].

The basic concept of H-BFP is explained with Fig. 1, which
shows necessary functional blocks for a realization of H-BFP
together with respective data representations in each functional
block. H-BFP is realized by adding two more functional blocks to
a usual fixed-point computation unit. These two functional blocks

Figure 1: Concept of hierarchical block-floating-point (H-BFP).
Left: Functional blocks to realize H-BFP, and

Right: respective data representations in each functional block.

A SOFTWARE / HARDWARE CODESIGNED HANDS FREE SYSTEM

ON A “RESIZABLE” BLOCK-FLOATING-POINT DSP

Shiro Kobayashi, Isamu Kozuka, Wai Hung Tang, and Diemo Landmann

Information Technology Laboratory, Asahi Kasei Corporation

E-mail: shiro@ljk.ag.asahi-kasei.co.jp

V - 1490-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

are used to convert each data element between floating-point and
fixed-point.

At the output of fixed-point computation unit, output data
elements from a computation, i.e, computation results, are
represented in a double-word fixed-point format. When they are
stored into data memory, each of them is normalized individually
through a shift operation to the most-significant-bit direction. In
other words, each computation result is stored in data memory in
a form that includes a normalized mantissa and a exponent, called
element exponent. When a computation result is loaded from data
memory for the following computation, its normalized mantissa
is shifted to the least-significant-bit (LSB) direction. This shift
operation to the LSB direction is performed by referring to the
difference between each element exponent and block exponent
such that binary-point location of all computation results in a data
block is arranged to the binary-point location of the computation
result with the maximal value.

2.2. Customizability
On the FitDSP platform, a custom DSP configuration can be
designed to meet specific requirements of a given application.
The requirements are specified in terms of 1) hardware cost such
as gate counts, the amount of data memory, and the amount of
instruction memory.

The software development tool set for FitDSP platform
includes an assembler, a linker, and a debugger. Each tool is
capable of reading a DSP configuration file such that any specific
DSP configuration in terms of the number of DSP resources can
be emulated. Thus, a signal processing engineer can explore a
wide design domain for the most preferable solution for a given
application. DSP resources which engineers can specify the
numbers include computation units and all registers in the DSP
platform. Also the number of block-loop unit can be set freely.
Not only the numbers but also the word-length of those resources
are also left variable.

In addition to consider those DSP core resources, it is also
very important to take into account the size of data memory on
the design of a custom chip solution. Hence, the tool set allowed
that the mantissa word-length of each data element in data
memory be set independently of the word-length of computation
data path. With this feature, a programmer can evaluate a data
memory configuration with a shorter word-length for specific
data elements (or a data block) with a little impact on the overall
signal processing quality.

Fig. 2 explains the software / hardware codesign design flow
that has been taken. At the first stage, with the help of software
development tool set, the algorithm is described in the assembly
language without any limitation on DSP resources. Also in this
stage, a missing functionality of the DSP platform has been
identified. Then in the second stage, a short effort has been paid
to minimize the number of DSP resources. With assembly
language for FitDSP platform, programmers do not need to
specify register resources with a specific index. They can, rather,
tell assembler to allocate a register that is free at that moment. In
order to enable the reuse of allocated registers, programmer need
to explicitly declare the life of a register in assembly language
syntax.

Finally in the last stage, a horizontal compression scheme is
applied to the native VLIW ISA. Only necessary combinations of
VLIW fields are identified in a given application program, and
encoded into an application-specific horizontally compressed
instruction word (HCIW) ISA

3. DSP REALIZATION

3.1. DSP CONFIGURATION
Through the software / hardware codesign design flow explained
in the previous chapter, a DSP configuration has been designed
for the given hands free telephone application. The block
diagram of resultant configuration, now named as FitDSP-
piquant configuration, is presented in Fig. 3.

With the piquant configuration, four data elements are always
jointly transferred as a data group between computation unit and
data memory. The purpose of exploiting grouped data transfer
scheme is twofold: first, to achieve high-rate data transfer, and
second, to reduce the bit counts of data memory. A high-rate data
transfer scheme is preferred in the echo canceller to implement a
sample-wise adaptive filter where the local reuse of filter
coefficients is not possible. A grouped data transfer scheme also
contributes in an implementation of H-BFP to a reduction in the
storage requirement for element exponents. Mantissas and
exponents are stored in data memory in a manner shown in data
memory in Fig. 3. The exponent field in a data group is also used
for storing a block exponents. When a block exponent is stored,
the mantissa fields of corresponding data group are not used.

After signal processing quality evaluation, the word-length of
a mantissa and an exponent is set to 15 bits and 8 bits,
respectively. A 15 bits mantissa from data memory is expanded to
a 16 bits mantissa in the alignment shifter by holding the most-
significant-bit of shifted-out bits as the least-significant-bit of
new mantissa. Internal computations in fixed-point computation
units are performed on 16 bits mantissas.

FitDSP-Piquant configuration has been implemented on an
FPGA platform. The exploited FPGA is a Cyclone series
EP1C20 device of Altera Corporation. In Cyclone series devices,
circuits are constructed with configuration blocks called Logic
Elements (LEs). Each LE contains a register and a Look-Up-

Figure 2: Overview of the exploited software / hardware codesign
design flow. A custom DSP configuration is designed through a

3-stage customization step: i.e., [1] Identification of missing
functionality and addition of corresponding DSP extensions, [2]

Introduction of limitations into the number of DSP resources
(resize), and [3] Introduction of limitations into the combinations

of each instruction fields in a VLIW ISA.

V - 150

➡ ➡

Table (LUT) that can constitute a 4-inputs combinational logic.
The number of LEs that are required for implementing FitDSP-
Piquant configuration is summarized in Table 1.

Two kinds of numbers are presented in Table 1. They
correspond to the different place-and-route strategies of Altera’s
development tool. With “auto register packed” option set to
“normal”, the LUT and the register in the same LE can be used to
implement a related functionality. For a processor-kind of circuit
where registers and combinational logic are tightly coupled,
activation of this feature probably makes sense.

With this option set to “off”, the LUT and the register in the
same LE are usually not utilized at the same time. This setting is
used to estimate the number of gates (gate count) with standard
cell technologies. From the LE counts with “auto register
packed” option set to “off”, a gate counts with a 0.35 um standard
cell library is estimated. For a register, a ratio of 10 gates per bit
is assumed. For a combinational logic, gate count is assumed to
be 4.55 gates per LE. This conversion ratio is based on the results
from a previous development which has performed both FPGA
implementation and standard cell implementation. Estimated area

from estimated gate counts is about 2 mm2 for the piquant
configuration.

4. IMPLEMENTATION RESULTS

Upon the development of assembly programs for the application,
we have not prepared any fixed-point model for finite word-
length effect evaluation. This development procedure without a
time-consuming preparation of fixed-point model contributes to a

great reduction in the total development time of the application
program.

All computations are realized successfully in H-BFP. Several
accuracy-sensitive computation modules are also implemented in
software-enabled floating-point. With software-enabled floating-
point, no block exponent is defined. However, element exponents
are used to align the binary-point locations of two data elements.
Division and logarithm computations found in the noise canceller
algorithm are classified as accuracy-sensitive modules.

4.1. Noise Suppressor
During the implementation of the noise canceller algorithm, such
functionality as division, logarithm, and conditional execution
are identified as missing functionality in the stage 2 of the design
flow that is explained in the section 2.2. All of these functionality
have been put into an ALU extension together with a new
dedicated instruction field in very long instruction word (VLIW)
type instruction set architecture (ISA).

4.2. Echo Canceller
During the implementation of the echo canceller algorithm, no
requirements for special functionality extension has been found.
Thus, the implementation effort has been spent in the resizing of
DSP resources, and especially in the design of application-
specific ISA. A good example can be seen in the different
approaches to the computation of signal power.

In echo canceller, estimated echo signals are generated with
an adaptive finite impulse response (FIR) filter. With an adaptive
filter, the coefficients of the filter is dependent on the previous

Figure 3: A block diagram of Piquant configuration of FitDSP.

FPGA (actual) with different

“auto packed register” settings
of

nand2 gate

(estimate)

Normal Off

DSP

module

of

LE

of

comb-LE

of

reg-LE

DAGU 439 299 261 3,970

PFCU 593 394 329 5,083

BFPU 343 332 57 2,081

A/N-SFT 643 728 3,312

L/S-BUF 136 136 1,360

IREG 827 729 355 6,867

RREG 430 352 286 4,462

MAC 749 749 5 3,458

ALU 236 220 36 1,361

Total 4,396
3,803 1,465

31,954
5,265

Table 1: Hardware complexity of FitDSP-Piquant configuration

on Cyclone EP1C20.

In this table, comb-LE and reg-LE represent a combinational LE

(LE in which only the LUT is utilized), and a register LE (LE in

which only the register is utilized), respectively.

V - 151

➡ ➡

filter outputs. Hence, how to keep the accuracy of the coefficients
is very important. Computation of the signal power of the far-end
input signal is the first step of producing a set of filter
coefficients. Two possible approaches to the computation of the
signal power of N signal samples are:
• (Approach 1) Straightforward accumulation

(1)

• (Approach 2) Update by subtract-oldest and add-latest

(2)

With these two different approaches to the computation of
signal power, the entire echo canceller has been implemented and
the accuracies of estimated echo signals have been evaluated. In
order to compare the performance of different approaches fairly,
a segmental signal-to-noise ratio (SSNR) is used as an objective
measure. The SSNR measure is defined as an average of sample-
wise signal-to-noise ratio (SNR) that is defined as

(3)

where an output from a reference C model is taken as a
reference(n), while a target(n) is an output from several different
target implementations. The reference C model is written in
double-precision floating-point (“double” data-type in C). In
addition to three implementations on FitDSP-piquant, the target
implementations include two single-precision floating-point
implementations (“float” data-type in C), and a fixed-point
implementation which uses a 32-bit double word format to
represent estimated echo signal. An evaluation result is presented
in Fig. 4, which presents the SSNR scores of estimated echo
signals as well as corresponding actual waveforms of signal
power.

Two H-BFP implementations with the approach 1 and 2 have
been first evaluated. In Fig. 4, corresponding curves are labelled
as “Accumulation Assembly” and “Add/Sub Assembly”,
respectively. A situation of error accumulation in signal power
computation with approach 2 can be seen in the top graph. It is
also understood that this situation actually degrades overall
SSNR score of echo signal. They both uses 15 bits for a mantissa.
The required number of computation to compute signal power
with approach 2 is 2 MIPS less than with approach 1. Thus, the
total required MIPS count is estimated to be either 13 or 15 MIPS
for the entire echo canceller of 10 MOPS complexity.

Above situation is also visible even with expensive 32-bit
single-precision floating-point implementations, which are
presented as “Accumulation C++ Float” and “Add/Sub C++
Float”. But there are 2 MIPS less when the addition/subtraction
approach is used.

5. CONCLUSIONS

This paper presented a hands free telephone system
implementation on a custom-configured, block-floating-point

DSP. This implementation consumes 13 or 15 MIPS of DSP
performance for an echo canceller task of 10 MOPS complexity,
depending of the accuracy. The required MIPS for a SS-based
noise canceller is only 2 MIPS. The implementation was carried
out on an FPGA platform. An expected core size of the DSP is 2

mm2 with a 0.35 um standard cell process. A software / hardware
codesign design flow was also presented with some actual
examples from the implementation. An objective evaluation of
signal processing quality has shown that exploited hierarchical
block-floating-point can achieve much higher accuracy than
fixed-point.

REFERENCES

[1] M. Liem and O. Manck, “Architecture of a Single
Chip Acoustic Echo and Noise Canceller using Cross
Spectral Estimation,” in the processing of ICASSP
2003, II-637-640, 2003.

[2] S. Kobayashi and G. Fettweis, “A Hierarchical Block-
Floating-Point Arithmetic,” Journal of VLSI Signal
Processing, 24(1):19–30, 2000.

[3] S. Kobayashi, “Developing a DSP Core for
Embedded Devices which Ease Developing a Fixed
Point Program - Capable of Developing an MP3
Decoder in 15 persons/day” (Japanese), Design Wave
Magazine, September 2003.

[4] http://www.asahi-kasei.co.jp/vorero/en/nc/index.html

power i() s
2

i k–()

k 0=

N 1–

=

power i() power i 1–() s
2

i() s
2

i N–()–+=

SNR 10
reference n()

2

reference n() target n()–
2

---log=

Figure 4: Segmental signal-to-noise ratios of estimated echo
signals with different implementations (Bottom graph) with

waveforms of corresponding power signals (Top graph). Curves
are up to 30 frames (128 samples per frame) from the beginning.
Implementations include three FitDSP-piquant implementations

with different power computation approaches and different
mantissa word-length, two short-precision floating-point

implementations with different power computation approaches,
and 16-bit fixed-point (in part 32-bit) implementation.

Estimated Echo SSNR

0

20

40

60

80

100

120

140

160

1 6 11 16 21 26

Frame

S
S

N
R

[d
B

]

Echo by Power

Accumulation

Assembly

Echo by

Add/Sub

Assembly

Echo by Power

Accumulation

C++ Float

Echo by Power

Add/Sub C++

Float

Echo by Power

Accumulation

C++ Fixed

Echo by Power

Accumulation

24 bit Assembly

Power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
o
w

er
[W

]

Power by

Accumulation

C++ Double

Power by

Accumulation

C++ Float

Power by

Accumulation

Assembly

Power by

Add/Sub

Assembly

V - 152

➡ ➠

