
NEW MODULO DECOMPOSED RESIDUE-TO-BINARY ALGORITHM

 FOR GENERAL MODULI SETS

Shaoqiang Bi*, Wei Wang**, and Asim Al-Khalili*

*Department of Electrical & Computer Engineering

Concordia University

** Department of Electrical & Computer Engineering

The University of Western Ontario

Email: bsqiang@ece.concordia.ca, wwang@eng.uwo.ca, asim@ece.concordia.ca

In this paper, we propose a new modulo arithmetic

theorem to decompose the base of the modulo operations.

This new theorem has been used to further reduce the

modulo size of the modified CRT for general moduli sets.

Furthermore, we have applied the modulo decomposition

technique and the modulo improved CRT to derive a R/B

algorithm for a newly found three-moduli set

M={ 1, , }. In comparison to the modified

CRT, the improved CRT can cut by half the modulo size

and reduce the length of the modulo operator in terms of

36%.
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ABSTRACT

1. INTRODUCTION

Multimedia has become part of everyone’s life. In 

addition to conventional user interfaces and I/O 

operations, the multimedia applications demand cost-

effective, high-speed and low-power hardware

implementations of real-time digital signal processing

(DSP) algorithms. The carry-free nature of Residue

Number Systems (RNS) has made it perfectly suited for

high-speed DSP computation with high precision [1], [2].

As the most complicated part of a RNS system, the

residue-to-binary converter has its speed and hardware

complexity significantly depending on the chosen moduli

set. For general moduli sets, the residue-to-binary (R/B) 

converters are based on the Chinese Remainder Theorem

(CRT) or mixed-radix conversion. New algorithms called

modified Chinese Remainder Theorems have been

recently proposed to reduce the size of the modulo

operation [3], [5].

The modulo carry-propagate addition is the critical 

part of the design of an area-time efficient residue-to-

binary converter. The modulo operation consumes a large

portion of the hardware and causes a large delay. Most of

the known solutions for the modulo carry-propagate

addition rely on end-around-carry adders. However, in 

end-around-carry adders, the carry-out is fed back into the

carry-in, which may lead to an unwanted race condition

[4].

In this paper, we propose a new theorem to further

enhance the modulo operation leading to much smaller

and faster modulo operation

2. BACKGROUND

For any two numbers X and Pi,  is defined asii PXx mod

X x i bP i
for some integer b such that ii Px0 .

For convenience, we denote byiPmodX
iP

X .

To perform the R/B conversion, i.e., to convert the

residue number (x1,x2, ..., xn ) into the binary number X,

the Chinese Remainder Theorem is widely used. The

CRT requires a modulo-M (large-valued) operation and it

is not efficient for the implementation.  Thus we need to 

use a new formulation of the CRT that reduces modulo

operations from modulo M  to modulo

[3].
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In the next section, we will propose a new theorem

that further reduces the base of the modulo operation in 

modified CRT. We need the following properties:

Lemma 1
221

11 PPP
KPKP  for all integers  and 1, PK 2P

Lemma 2
PPPP

BABA  for all integers BA,

and P

Lemma 3
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KK  for all integers and1, PK 2P
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We now propose a new theorem to decompose the base of

the modulo arithmetic.

Theorem 1 Given integers K, , where n>1,

we have 
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Proof:   (Proved by mathematical induction)

(1) Base step:

Since n >1, let n = 2. We have
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When n = 3, we have
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Thus, Theorem 1 holds for n =2 and n =3. 

(2) Induction step:

Assumption: Theorem 1 is true when n = W, where W

is a positive integer and W > 1. That is,
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We need to show that Theorem 1 holds for n = W+1.

That is, 
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Proof for induction step:
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Thus, we have shown that Theorem 1 holds for n = W
+ 1 under the assumption that Theorem 1 holds for n = W.

In conclusion, from the base step and induction step, 

Theorem 1 holds for any positive integers that are greater 

than 1.

With Theorem 1, it is seen that a modulo operation

based on the product of n positive integers P

can be decomposed to n individual modulo operations

where each operation is based on one of the positive

integers . Using Theorem 1, a modulo

operation with large base can be partitioned into several

small wordlength channels in parallel.  Thus, Theorem 1

can result in a parallel and high-speed operation.

nPP ,,, 21

nPPP ,,, 21

We give the following example to illustrate how 

Theorem 1 works.

Example 1: For a modulo operation
120

1099  and four

small integers 1205432 , we have

191099
120

using Theorem 1, we have

45

5432 32

1099
32

432

1099
4321099

2

3

1099
2

1099
2

1910180

With Theorem 1, we use 4 parallel small size modulo

operations to take the place of one big size modulo

operation. The length of modulo operation is reduced

from 7 bits to 3 bits. Theorem 1 provides us with a very

high concurrent operation, thus resulting in very high

speed and low-power VLSI implementation.
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In this section, we apply the proposed modulo reduction

technique to simplify the modulo operation with large

base in the modified CRT for general moduli sets.

523645
8

3645
89

78

3645
7897

8

75

The above R/B conversion requires one modulo-280

operation if using the modified CRT. By using Theorem 2, 

the same R/B conversion requires only three small size

operations: modulo-5, modulo-7 and modulo-8. That is to

say, compared to the modified CRT, the proposed method

decreases the modulo size from 9-bit to 4-bit.

Theorem 2 Given the moduli set { }, the

residue number ( ) is converted into the binary

number X by
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5.  NEW R/B ALGORITHM FOR M 

where n>1, We now apply the modulo reduction technique and the

modulo reduced CRT to derive R/B algorithms for one

newly found three-moduli set in form of { 1, ,

}. We present the three-moduli case of Theorem 2

as Corallary 1.
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(Proof is omitted due to lack of space)

Theorem 2 can reduce the complexity of the modulo

operation in CRT and the modified CRT to a great scale

by partitioning the modulo operation with a large base to

several individual modulo operations of small bases in

parallel. The parallelism provides high concurrent

operation and reduces the delay. And by choosing the

bases of several individual modulo operations with

similar magnitude, we can increase the modularity and 

reduce the area further. We use the following example to

compare the Modified CRT and Theorem 2. 

where n>1,
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Example 2: Given the moduli set {9, 8, 7, 5}, the

residue number (7, 4, 3, 2) is converted to the binary

number format X.

Using the modified CRT, we get w ,3111 352w ,

, ,403w 564w 10
9

1

1N , 3
8

1

2N , 5
7

1

3N , and

4
5

1

4N . The modulo base is 8 .28057

(Proof is omitted due to lack of space)

The following R/B algorithm for a newly found three-

moduli sets in form of { } is derived based on

Collorary 1.  The modulo operation of the R/B algorithms

is simplified to modulo one number.

31 ,2, PP n

28043211 4565403353119 xxxxxX

52597364597
280 Proposition 1: For M={ 1, , }, we haven2 n2 12 1n

Using Theorem 2, we get w , ,3111 352w 403w ,
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9
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(Proof is omitted due to lack of space)
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When ,nP 21 nKK
P 21

is just a truncation operation.

nK
2

 is the n-bit LSBs of K, whereas the floor operation

n

K

P

K

21

is the remaining part after the truncation.

Then these two operations will not require any hardware

resources in the VLSI implementation.

Example 3: For a R/B converter with 8-bit dynamic

range based on the moduli set M={ 2 1, 2 , 2 }, the

specific moduli set {15,16,7} is chosen when n=4, since

7 16 15=1680>2

n n 11n

8=256. Randomly choose a number

from 0 to 255, for example, X=38. Its RNS representation

X=( , , ) is (8,6,3).1x 2x 3x

Based on the modified CRT, we have
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3
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1
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21346
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n 382158)12(1 YxX

Based on Proposition 1, we have
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16
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4 842 +
16

1346

The binary representation of 1346 is (10101000010)2,

thus1346 = (1010100.0010)42 2. And (1010100)2 is 

equal to 84, while  (0010)2 is the binary representation of 

16
1346 . Then, we have 

272

4 )0010()1010100(2Y

22

4 )0010()000(2

2)00000010( 2

n 382158)12(1 YxX

When using the modified CRT, the above residue-to-

binary conversion needs a modulo 112 operation. By

using Proposition 1 which is derived from Theorem 2, the

modulo size is reduced from 112 to 7. That is to say, the

length of modulo operation is reduced from 7-bit to 3-bit.

Also, the modulo operator is decreased from 1346 to 84,

reduced by 4-bit. The 4-bit LSBs of Y are just the same 4-

bit LSBs of 1346. Also notice that the operations of

multiplication by 24 and addition to (  correspond to

a simple concatenation operation. The comparison

between the modified CRT and the improved CRT is

summarized in Table I. The reduction in size of both the

modulo base and the modulo operator will result in a

saving of the hardware resource for a VLSI 

implementation. It is noticeable that the concatenation and 

calculation do not consume any hardware resources.

Thus, Theorem 2 is useful for the VLSI implementation

of R/B converters to reduce the size of the modulo

operation.

2)0010

TABLE I 

COMPARISON BETWEEN 

MODIFIED CRT AND IMPROVED CRT

Modified

CRT

Improved

CRT

Improvement

Modulo

Size
7-bit 3-bit 57%

Modulo

Operator
11-bit 7-bit 36%

6. CONCLUSION

In this paper, we have proposed a new modulo arithmetic

theorem to decompose the base of the modulo operations.

This new theorem has been used to further reduce the

modulo size of the modified CRT [3], [5] for general

moduli sets. Furthermore, we have applied the modulo

decomposition technique and the modulo improved CRT

to derive a R/B algorithm for one newly found three-

moduli set M={ 1, , }. Comparing with the

modified CRT, the improved CRT can cut down more

than half of the modulo size and reduce the length of the

modulo operator in terms of 36%.
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